A class for handling numerical operations for models. More...
#include <BCIntegrate.h>
A class for handling numerical operations for models.
Definition at line 45 of file BCIntegrate.h.
An enumerator for Cuba integration method
Definition at line 71 of file BCIntegrate.h.
{ kCubaVegas, kCubaSuave, kCubaDivonne, kCubaCuhre };
An enumerator for the integration algorithm
Definition at line 55 of file BCIntegrate.h.
{ kIntMonteCarlo, kIntImportance, kIntMetropolis, kIntCuba, NIntMethods };
An enumerator for the marginalization algorithm
Definition at line 59 of file BCIntegrate.h.
{ kMargMonteCarlo, kMargMetropolis, NMargMethods };
An enumerator for the mode finding algorithm
Definition at line 63 of file BCIntegrate.h.
{ kOptSA, kOptMetropolis, kOptMinuit, NOptMethods };
An enumerator for the Simulated Annealing schedule
Definition at line 67 of file BCIntegrate.h.
{ kSACauchy, kSABoltzmann, kSACustom, NSAMethods };
BCIntegrate::BCIntegrate | ( | ) |
The default constructor
Definition at line 31 of file BCIntegrate.cxx.
: BCEngineMCMC() , fNvar(0) , fNbins(100) , fNSamplesPer2DBin(100) , fMarkovChainStepSize(0.1) , fMarkovChainAutoN(true) , fDataPointLowerBoundaries(0) , fDataPointUpperBoundaries(0) , fFillErrorBand(false) , fFitFunctionIndexX(-1) , fFitFunctionIndexY(-1) , fErrorBandContinuous(true) , fErrorBandNbinsX(100) , fErrorBandNbinsY(500) , fMinuit(0) , fFlagIgnorePrevOptimization(false) , fFlagWriteMarkovChain(false) , fMarkovChainTree(0) , fSAT0(100) , fSATmin(0.1) , fTreeSA(0) , fFlagWriteSAToFile(false) , fNiterPerDimension(100) #ifdef HAVE_CUBA_H , fIntegrationMethod(BCIntegrate::kIntCuba) #else , fIntegrationMethod(BCIntegrate::kIntMonteCarlo) #endif , fMarginalizationMethod(BCIntegrate::kMargMetropolis) , fOptimizationMethod(BCIntegrate::kOptMinuit) , fOptimizationMethodMode(BCIntegrate::kOptMinuit) , fSASchedule(BCIntegrate::kSACauchy) , fNIterationsMax(1000000) , fNIterations(0) , fRelativePrecision(1e-3) , fAbsolutePrecision(1e-12) , fCubaIntegrationMethod(BCIntegrate::kCubaVegas) , fCubaMinEval(0) , fCubaMaxEval(2000000) , fCubaVerbosity(0) , fCubaVegasNStart(25000) , fCubaVegasNIncrease(25000) , fCubaSuaveNNew(10000) , fCubaSuaveFlatness(50) , fError(-999.) { fMinuitArglist[0] = 20000; fMinuitArglist[1] = 0.01; }
BCIntegrate::BCIntegrate | ( | BCParameterSet * | par | ) |
A constructor
Definition at line 84 of file BCIntegrate.cxx.
: BCEngineMCMC() , fNvar(0) , fNbins(100) , fNSamplesPer2DBin(100) , fMarkovChainStepSize(0.1) , fMarkovChainAutoN(true) , fDataPointLowerBoundaries(0) , fDataPointUpperBoundaries(0) , fFillErrorBand(false) , fFitFunctionIndexX(-1) , fFitFunctionIndexY(-1) , fErrorBandContinuous(true) , fErrorBandNbinsX(100) , fErrorBandNbinsY(500) , fMinuit(0) , fFlagIgnorePrevOptimization(false) , fFlagWriteMarkovChain(false) , fMarkovChainTree(0) , fSAT0(100) , fSATmin(0.1) , fTreeSA(0) , fFlagWriteSAToFile(false) , fNiterPerDimension(100) #ifdef HAVE_CUBA_H , fIntegrationMethod(BCIntegrate::kIntCuba) #else , fIntegrationMethod(BCIntegrate::kIntMonteCarlo) #endif , fMarginalizationMethod(BCIntegrate::kMargMetropolis) , fOptimizationMethod(BCIntegrate::kOptMinuit) , fOptimizationMethodMode(BCIntegrate::kOptMinuit) , fSASchedule(BCIntegrate::kSACauchy) , fNIterationsMax(1000000) , fNIterations(0) , fRelativePrecision(1e-3) , fAbsolutePrecision(1e-12) , fCubaIntegrationMethod(BCIntegrate::kCubaVegas) , fCubaMinEval(0) , fCubaMaxEval(2000000) , fCubaVerbosity(0) , fCubaVegasNStart(25000) , fCubaVegasNIncrease(25000) , fCubaSuaveNNew(10000) , fCubaSuaveFlatness(50) , fError(-999.) { SetParameters(par); fMinuitArglist[0] = 20000; fMinuitArglist[1] = 0.01; }
BCIntegrate::~BCIntegrate | ( | ) | [virtual] |
The default destructor
Definition at line 139 of file BCIntegrate.cxx.
int BCIntegrate::CubaIntegrand | ( | const int * | ndim, | |
const double | xx[], | |||
const int * | ncomp, | |||
double | ff[], | |||
void * | userdata | |||
) | [static] |
Integrand for the Cuba library.
ndim | The number of dimensions to integrate over | |
xx | The point in parameter space to integrate over (scaled to 0 - 1 per dimension) | |
ncomp | The number of components of the integrand (usually 1) | |
ff | The function value |
Definition at line 1826 of file BCIntegrate.cxx.
{ #ifdef HAVE_CUBA_H // scale variables double jacobian = 1.0; std::vector<double> scaled_parameters; for (int i = 0; i < *ndim; i++) { double range = global_this->fx->at(i)->GetUpperLimit() - global_this->fx->at(i)->GetLowerLimit(); // multiply range to jacobian jacobian *= range; // get the scaled parameter value scaled_parameters.push_back(global_this->fx->at(i)->GetLowerLimit() + xx[i] * range); } // call function to integrate ff[0] = global_this->Eval(scaled_parameters); // multiply jacobian ff[0] *= jacobian; // multiply fudge factor ff[0] *= 1e99; // remove parameter vector scaled_parameters.clear(); #else BCLog::OutError("!!! This version of BAT is compiled without Cuba."); BCLog::OutError(" Use other integration methods or install Cuba and recompile BAT."); #endif return 0; }
double BCIntegrate::CubaIntegrate | ( | BCIntegrate::BCCubaMethod | method, | |
std::vector< double > | parameters_double, | |||
std::vector< double > | parameters_int | |||
) |
Calculate integral using the Cuba library. For details see documentation.
method | A short cut for the method | |
parameters_double | A vector of parameters (double) | |
parameters_int | A vector of parameters (int) |
Definition at line 1907 of file BCIntegrate.cxx.
{ #ifdef HAVE_CUBA_H const int NDIM = int(fx ->size()); const int NCOMP = 1; const int USERDATA = 0; const int SEED = 0; const int NBATCH = 1000; const int GRIDNO = -1; const char*STATEFILE = ""; const double EPSREL = parameters_double[0]; const double EPSABS = parameters_double[1]; const int VERBOSE = int(parameters_int[0]); const int MINEVAL = int(parameters_int[1]); const int MAXEVAL = int(parameters_int[2]); int neval; int fail; int nregions; double integral[NCOMP]; double error[NCOMP]; double prob[NCOMP]; global_this = this; integrand_t an_integrand = &BCIntegrate::CubaIntegrand; if (method == 0) { // set VEGAS specific parameters const int NSTART = int(parameters_int[3]); const int NINCREASE = int(parameters_int[4]); // call VEGAS integration method Vegas(NDIM, NCOMP, an_integrand, USERDATA, EPSREL, EPSABS, VERBOSE, SEED, MINEVAL, MAXEVAL, NSTART, NINCREASE, NBATCH, GRIDNO, STATEFILE, &neval, &fail, integral, error, prob); // interface for Cuba version 1.5 /* Vegas(NDIM, NCOMP, an_integrand, EPSREL, EPSABS, VERBOSE, MINEVAL, MAXEVAL, NSTART, NINCREASE, &neval, &fail, integral, error, prob); */ } else if (method == 1) { // set SUAVE specific parameters // const int LAST = int(parameters_int[3]); const int NNEW = int(parameters_int[3]); const double FLATNESS = parameters_double[2]; // call SUAVE integration method Suave(NDIM, NCOMP, an_integrand, USERDATA, EPSREL, EPSABS, VERBOSE, SEED, MINEVAL, MAXEVAL, NNEW, FLATNESS, &nregions, &neval, &fail, integral, error, prob); // interface for Cuba version 1.5 /* Suave(NDIM, NCOMP, an_integrand, EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL, NNEW, FLATNESS, &nregions, &neval, &fail, integral, error, prob); */ } else if (method == 2) { // set DIVONNE specific parameters const int KEY1 = int(parameters_int[3]); const int KEY2 = int(parameters_int[4]); const int KEY3 = int(parameters_int[5]); const int MAXPASS = int(parameters_int[6]); const int BORDER = int(parameters_int[7]); const int MAXCHISQ = int(parameters_int[8]); const int MINDEVIATION = int(parameters_int[9]); const int NGIVEN = int(parameters_int[10]); const int LDXGIVEN = int(parameters_int[11]); const int NEXTRA = int(parameters_int[12]); const int FLAGS = 0; // call DIVONNE integration method Divonne(NDIM, NCOMP, an_integrand, USERDATA, EPSREL, EPSABS, FLAGS, SEED, MINEVAL, MAXEVAL, KEY1, KEY2, KEY3, MAXPASS, BORDER, MAXCHISQ, MINDEVIATION, NGIVEN, LDXGIVEN, NULL, NEXTRA, NULL, &nregions, &neval, &fail, integral, error, prob); // interface for Cuba version 1.5 /* Divonne(NDIM, NCOMP, an_integrand, EPSREL, EPSABS, VERBOSE, MINEVAL, MAXEVAL, KEY1, KEY2, KEY3, MAXPASS, BORDER, MAXCHISQ, MINDEVIATION, NGIVEN, LDXGIVEN, NULL, NEXTRA, NULL, &nregions, &neval, &fail, integral, error, prob); */ } else if (method == 3) { // set CUHRE specific parameters // const int LAST = int(parameters_int[3]); const int KEY = int(parameters_int[4]); const int FLAGS = 0; // call CUHRE integration method Cuhre(NDIM, NCOMP, an_integrand, USERDATA, EPSREL, EPSABS, FLAGS, MINEVAL, MAXEVAL, KEY, &nregions, &neval, &fail, integral, error, prob); // interface for Cuba version 1.5 /* Cuhre(NDIM, NCOMP, an_integrand, EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL, KEY, &nregions, &neval, &fail, integral, error, prob); */ } else { std::cout << " Integration method not available. " << std::endl; integral[0] = -1e99; } if (fail != 0) { std::cout << " Warning, integral did not converge with the given set of parameters. "<< std::endl; std::cout << " neval = " << neval << std::endl; std::cout << " fail = " << fail << std::endl; std::cout << " integral = " << integral[0] << std::endl; std::cout << " error = " << error[0] << std::endl; std::cout << " prob = " << prob[0] << std::endl; } return integral[0] / 1e99; #else BCLog::OutError("!!! This version of BAT is compiled without Cuba."); BCLog::OutError(" Use other integration methods or install Cuba and recompile BAT."); return 0.; #endif }
double BCIntegrate::CubaIntegrate | ( | ) |
Definition at line 1865 of file BCIntegrate.cxx.
{ #ifdef HAVE_CUBA_H std::vector<double> parameters_double; std::vector<double> parameters_int; parameters_double.push_back(fRelativePrecision); parameters_double.push_back(fAbsolutePrecision); parameters_int.push_back(fCubaVerbosity); parameters_int.push_back(fCubaMinEval); parameters_int.push_back(fCubaMaxEval); switch (fCubaIntegrationMethod) { case BCIntegrate::kCubaSuave: parameters_int.push_back(fCubaSuaveNNew); parameters_double.push_back(fCubaSuaveFlatness); break; case BCIntegrate::kCubaDivonne: break; case BCIntegrate::kCubaCuhre: break; default: // if unknown method run Vegas. Shouldn't ever happen anyway case BCIntegrate::kCubaVegas: parameters_int.push_back(fCubaVegasNStart); parameters_int.push_back(fCubaVegasNIncrease); } // print to log BCLog::OutDebug( Form(" --> Running Cuba/%s integation over %i dimensions.", DumpCubaIntegrationMethod().c_str(), fNvar)); BCLog::OutDebug( Form(" --> Maximum number of iterations: %i", fCubaMaxEval)); BCLog::OutDebug( Form(" --> Aimed relative precision: %e", fRelativePrecision)); return CubaIntegrate(fCubaIntegrationMethod, parameters_double, parameters_int); #else BCLog::OutError("!!! This version of BAT is compiled without Cuba."); BCLog::OutError(" Use other integration methods or install Cuba and recompile BAT."); return 0.; #endif }
void BCIntegrate::DeleteVarList | ( | ) |
std::string BCIntegrate::DumpCubaIntegrationMethod | ( | BCIntegrate::BCCubaMethod | type | ) |
Definition at line 2173 of file BCIntegrate.cxx.
{ switch(type) { case BCIntegrate::kCubaVegas: return "Vegas"; case BCIntegrate::kCubaSuave: return "Suave"; case BCIntegrate::kCubaDivonne: return "Divonne"; case BCIntegrate::kCubaCuhre: return "Cuhre"; default: return "Undefined"; } }
std::string BCIntegrate::DumpCubaIntegrationMethod | ( | ) | [inline] |
Definition at line 834 of file BCIntegrate.h.
{ return DumpCubaIntegrationMethod(fCubaIntegrationMethod); };
std::string BCIntegrate::DumpIntegrationMethod | ( | BCIntegrate::BCIntegrationMethod | type | ) |
Definition at line 2128 of file BCIntegrate.cxx.
{ switch(type) { case BCIntegrate::kIntMonteCarlo: return "Sampled Mean Monte Carlo"; case BCIntegrate::kIntImportance: return "Importance Sampling"; case BCIntegrate::kIntMetropolis: return "Metropolis"; case BCIntegrate::kIntCuba: return "Cuba"; default: return "Undefined"; } }
std::string BCIntegrate::DumpIntegrationMethod | ( | ) | [inline] |
Definition at line 820 of file BCIntegrate.h.
{ return DumpIntegrationMethod(fIntegrationMethod); };
std::string BCIntegrate::DumpMarginalizationMethod | ( | ) | [inline] |
Definition at line 824 of file BCIntegrate.h.
{ return DumpMarginalizationMethod(fMarginalizationMethod); };
std::string BCIntegrate::DumpMarginalizationMethod | ( | BCIntegrate::BCMarginalizationMethod | type | ) |
Definition at line 2145 of file BCIntegrate.cxx.
{ switch(type) { case BCIntegrate::kMargMonteCarlo: return "Monte Carlo Integration"; case BCIntegrate::kMargMetropolis: return "Metropolis MCMC"; default: return "Undefined"; } }
std::string BCIntegrate::DumpOptimizationMethod | ( | BCIntegrate::BCOptimizationMethod | type | ) |
Definition at line 2158 of file BCIntegrate.cxx.
{ switch(type) { case BCIntegrate::kOptSA: return "Simulated Annealing"; case BCIntegrate::kOptMetropolis: return "Metropolis MCMC"; case BCIntegrate::kOptMinuit: return "Metropolis MCMC"; default: return "Undefined"; } }
std::string BCIntegrate::DumpOptimizationMethod | ( | ) | [inline] |
Definition at line 828 of file BCIntegrate.h.
{ return DumpOptimizationMethod(fOptimizationMethod); };
std::string BCIntegrate::DumpUsedOptimizationMethod | ( | ) | [inline] |
Definition at line 830 of file BCIntegrate.h.
{ return DumpOptimizationMethod(fOptimizationMethodMode); };
double BCIntegrate::Eval | ( | std::vector< double > | x | ) | [virtual] |
Evaluate the unnormalized probability at a point in parameter space. Method needs to be overloaded by the user.
x | The point in parameter space |
Reimplemented in BCModel.
Definition at line 306 of file BCIntegrate.cxx.
{ BCLog::OutWarning( "BCIntegrate::Eval. No function. Function needs to be overloaded."); return 0; }
double BCIntegrate::EvalPrint | ( | std::vector< double > | x | ) |
Evaluate the un-normalized probability at a point in parameter space and prints the result to the log.
x | The point in parameter space |
Definition at line 333 of file BCIntegrate.cxx.
{ double val=Eval(x); BCLog::OutDebug(Form("BCIntegrate::EvalPrint. Value: %d.", val)); return val; }
double BCIntegrate::EvalSampling | ( | std::vector< double > | x | ) | [virtual] |
Evaluate the sampling function at a point in parameter space. Method needs to be overloaded by the user.
x | The point in parameter space |
Reimplemented in BCModel.
Definition at line 320 of file BCIntegrate.cxx.
{ BCLog::OutWarning( "BCIntegrate::EvalSampling. No function. Function needs to be overloaded."); return 0; }
void BCIntegrate::FCNLikelihood | ( | int & | npar, | |
double * | grad, | |||
double & | fval, | |||
double * | par, | |||
int | flag | |||
) | [static] |
Definition at line 1743 of file BCIntegrate.cxx.
{ // copy parameters std::vector <double> parameters; int n = global_this->GetNvar(); for (int i = 0; i < n; i++) parameters.push_back(par[i]); fval = - global_this->LogEval(parameters); // delete parameters parameters.clear(); }
void BCIntegrate::FindModeMCMC | ( | ) |
Does the mode finding using Markov Chain Monte Carlo (prerun only!)
Definition at line 1762 of file BCIntegrate.cxx.
{ // call PreRun // if (flag_run == 0) if (!fMCMCFlagPreRun) MCMCMetropolisPreRun(); // find global maximum // double probmax = (MCMCGetMaximumLogProb()).at(0); double probmax = 0; if ( int(fBestFitParameters.size()) == fNvar) { probmax = Eval( fBestFitParameters ); // fBestFitParameters = MCMCGetMaximumPoint(0); } // loop over all chains and find the maximum point for (int i = 0; i < fMCMCNChains; ++i) { double prob = exp( (MCMCGetMaximumLogProb()).at(i)); // copy the point into the vector if ( (prob >= probmax && !fFlagIgnorePrevOptimization) || fFlagIgnorePrevOptimization) { probmax = prob; fBestFitParameters.clear(); fBestFitParameterErrors.clear(); fBestFitParameters = MCMCGetMaximumPoint(i); for (int j = 0; j < fNvar; ++j) fBestFitParameterErrors.push_back(-1.); // error undefined fOptimizationMethodMode = BCIntegrate::kOptMetropolis; } } }
void BCIntegrate::FindModeMinuit | ( | std::vector< double > | start = std::vector<double>(0) , |
|
int | printlevel = 1 | |||
) | [virtual] |
Does the mode finding Does the mode finding using Minuit. If starting point is not specified, finding will start from the center of the parameter space.
start | point in parameter space from which the mode finding is started. | |
printlevel | The print level. |
Reimplemented in BCModel.
Definition at line 1258 of file BCIntegrate.cxx.
{ bool have_start = true; // check start values if (int(start.size()) != fNvar) have_start = false; // set global this global_this = this; // define minuit if (fMinuit) delete fMinuit; fMinuit = new TMinuit(fNvar); // set print level fMinuit->SetPrintLevel(printlevel); // set function fMinuit->SetFCN(&BCIntegrate::FCNLikelihood); // set UP for likelihood fMinuit->SetErrorDef(0.5); // set parameters int flag; for (int i = 0; i < fNvar; i++) { double starting_point = (fMin[i]+fMax[i])/2.; if(have_start) starting_point = start[i]; fMinuit->mnparm(i, fx->at(i)->GetName().data(), starting_point, (fMax[i]-fMin[i])/100., fMin[i], fMax[i], flag); } // do mcmc minimization // fMinuit->mnseek(); // do minimization fMinuit->mnexcm("MIGRAD", fMinuitArglist, 2, flag); // improve search for local minimum // fMinuit->mnimpr(); // copy flag fMinuitErrorFlag = flag; // check if mode found by minuit is better than previous estimation double probmax = 0; bool valid = false; if ( int(fBestFitParameters.size()) == fNvar) { valid = true; for (int i = 0; i < fNvar; ++i) if (fBestFitParameters.at(i) < fMin[i] || fBestFitParameters.at(i) > fMax[i]) valid= false; if (valid) probmax = Eval( fBestFitParameters ); } std::vector<double> tempvec; for (int i = 0; i < fNvar; i++) { double par; double parerr; fMinuit->GetParameter(i, par, parerr); tempvec.push_back(par); } double probmaxminuit = Eval( tempvec ); // set best fit parameters if ( (probmaxminuit > probmax && !fFlagIgnorePrevOptimization) || !valid || fFlagIgnorePrevOptimization) { fBestFitParameters.clear(); fBestFitParameterErrors.clear(); for (int i = 0; i < fNvar; i++) { double par; double parerr; fMinuit->GetParameter(i, par, parerr); fBestFitParameters.push_back(par); fBestFitParameterErrors.push_back(parerr); } // set optimization method used to find the mode fOptimizationMethodMode = BCIntegrate::kOptMinuit; } // delete minuit delete fMinuit; fMinuit = 0; return; }
void BCIntegrate::FindModeSA | ( | std::vector< double > | start = std::vector<double>(0) |
) |
Does the mode finding using Simulated Annealing. If starting point is not specified, finding will start from the center of the parameter space.
start | point in parameter space from thich the mode finding is started. |
Definition at line 1374 of file BCIntegrate.cxx.
{ // note: if f(x) is the function to be minimized, then // f(x) := - LogEval(parameters) bool have_start = true; std::vector<double> x, y, best_fit; // vectors for current state, new proposed state and best fit up to now double fval_x, fval_y, fval_best_fit; // function values at points x, y and best_fit (we save them rather than to re-calculate them every time) int t = 1; // time iterator // check start values if (int(start.size()) != fNvar) have_start = false; // if no starting point is given, set to center of parameter space if ( !have_start ) { start.clear(); for (int i = 0; i < fNvar; i++) start.push_back((fMin[i]+fMax[i])/2.); } // set current state and best fit to starting point x.clear(); best_fit.clear(); for (int i = 0; i < fNvar; i++) { x.push_back(start[i]); best_fit.push_back(start[i]); } // calculate function value at starting point fval_x = fval_best_fit = LogEval(x); // run while still "hot enough" while ( SATemperature(t) > fSATmin ) { // generate new state y = GetProposalPointSA(x, t); // check if the proposed point is inside the phase space // if not, reject it bool is_in_ranges = true; for (int i = 0; i < fNvar; i++) if (y[i] > fMax[i] || y[i] < fMin[i]) is_in_ranges = false; if ( !is_in_ranges ) ; // do nothing... else { // calculate function value at new point fval_y = LogEval(y); // is it better than the last one? // if so, update state and chef if it is the new best fit... if (fval_y >= fval_x) { x.clear(); for (int i = 0; i < fNvar; i++) x.push_back(y[i]); fval_x = fval_y; if (fval_y > fval_best_fit) { best_fit.clear(); for (int i = 0; i < fNvar; i++) best_fit.push_back(y[i]); fval_best_fit = fval_y; } } // ...else, only accept new state w/ certain probability else { if (fRandom->Rndm() <= exp( (fval_y - fval_x) / SATemperature(t) )) { x.clear(); for (int i = 0; i < fNvar; i++) x.push_back(y[i]); fval_x = fval_y; } } } // update tree variables fSANIterations = t; fSATemperature = SATemperature(t); fSALogProb = fval_x; fSAx.clear(); for (int i = 0; i < fNvar; ++i) fSAx.push_back(x[i]); // fill tree if (fFlagWriteSAToFile) fTreeSA->Fill(); // increate t t++; } // check if mode found by minuit is better than previous estimation double probmax = 0; bool valid = false; if ( int(fBestFitParameters.size()) == fNvar) { valid = true; for (int i = 0; i < fNvar; ++i) if (fBestFitParameters.at(i) < fMin[i] || fBestFitParameters.at(i) > fMax[i]) valid= false; if (valid) probmax = Eval( fBestFitParameters ); } double probmaxsa = Eval( best_fit); if ( (probmaxsa > probmax && !fFlagIgnorePrevOptimization) || !valid || fFlagIgnorePrevOptimization) { // set best fit parameters fBestFitParameters.clear(); fBestFitParameterErrors.clear(); for (int i = 0; i < fNvar; i++) { fBestFitParameters.push_back(best_fit[i]); fBestFitParameterErrors.push_back(-1.); // error undefined } // set optimization moethod used to find the mode fOptimizationMethodMode = BCIntegrate::kOptSA; } return; }
virtual double BCIntegrate::FitFunction | ( | std::vector< double > | , | |
std::vector< double > | ||||
) | [inline, virtual] |
Defines a fit function.
parameters | A set of parameter values | |
x | A vector of x-values |
Reimplemented in BCEfficiencyFitter, BCGraphFitter, and BCHistogramFitter.
Definition at line 582 of file BCIntegrate.h.
{ return 0.; };
double BCIntegrate::GetAbsolutePrecision | ( | ) | [inline] |
Definition at line 185 of file BCIntegrate.h.
{ return fAbsolutePrecision; };
BCCubaMethod BCIntegrate::GetCubaIntegrationMethod | ( | ) | [inline] |
Definition at line 190 of file BCIntegrate.h.
{ return fCubaIntegrationMethod; };
int BCIntegrate::GetCubaMaxEval | ( | ) | [inline] |
Definition at line 200 of file BCIntegrate.h.
{ return fCubaMaxEval; };
int BCIntegrate::GetCubaMinEval | ( | ) | [inline] |
Definition at line 195 of file BCIntegrate.h.
{ return fCubaMinEval; };
double BCIntegrate::GetCubaSuaveFlatness | ( | ) | [inline] |
Definition at line 225 of file BCIntegrate.h.
{ return fCubaSuaveFlatness; }
int BCIntegrate::GetCubaSuaveNNew | ( | ) | [inline] |
Definition at line 220 of file BCIntegrate.h.
{ return fCubaSuaveNNew; };
int BCIntegrate::GetCubaVegasNIncrease | ( | ) | [inline] |
Definition at line 215 of file BCIntegrate.h.
{ return fCubaVegasNIncrease; };
int BCIntegrate::GetCubaVegasNStart | ( | ) | [inline] |
Definition at line 210 of file BCIntegrate.h.
{ return fCubaVegasNStart; };
int BCIntegrate::GetCubaVerbositylevel | ( | ) | [inline] |
Definition at line 205 of file BCIntegrate.h.
{ return fCubaVerbosity; };
double BCIntegrate::GetError | ( | ) | [inline] |
Definition at line 230 of file BCIntegrate.h.
{ return fError; };
TH1D * BCIntegrate::GetH1D | ( | int | parIndex | ) |
parIndex1 | Index of parameter |
Definition at line 992 of file BCIntegrate.cxx.
{ if(fHProb1D.size()==0) { BCLog::OutWarning("BCModel::GetH1D. MarginalizeAll() has to be run prior to this to fill the distributions."); return 0; } if(parIndex<0 || parIndex>fNvar) { BCLog::OutWarning(Form("BCIntegrate::GetH1D. Parameter index %d is invalid.",parIndex)); return 0; } return fHProb1D[parIndex]; }
TH2D * BCIntegrate::GetH2D | ( | int | parIndex1, | |
int | parIndex2 | |||
) |
parIndex1 | Index of first parameter | |
parIndex2 | Index of second parameter, with parIndex2>parIndex1 |
Definition at line 1044 of file BCIntegrate.cxx.
{ if(fHProb2D.size()==0) { BCLog::OutWarning("BCModel::GetH2D. MarginalizeAll() has to be run prior to this to fill the distributions."); return 0; } int hindex = GetH2DIndex(parIndex1, parIndex2); if(hindex==-1) return 0; if(hindex>(int)fHProb2D.size()-1) { BCLog::OutWarning("BCIntegrate::GetH2D. Got invalid index from GetH2DIndex(). Something went wrong."); return 0; } return fHProb2D[hindex]; }
int BCIntegrate::GetH2DIndex | ( | int | parIndex1, | |
int | parIndex2 | |||
) |
parIndex1 | Index of first parameter | |
parIndex2 | Index of second parameter, with parIndex2>parIndex1 |
Definition at line 1008 of file BCIntegrate.cxx.
{ if(parIndex1>fNvar-1 || parIndex1<0) { BCLog::OutWarning(Form("BCIntegrate::GetH2DIndex. Parameter index %d is invalid", parIndex1)); return -1; } if(parIndex2>fNvar-1 || parIndex2<0) { BCLog::OutWarning(Form("BCIntegrate::GetH2DIndex. Parameter index %d is invalid", parIndex2)); return -1; } if(parIndex1==parIndex2) { BCLog::OutWarning(Form("BCIntegrate::GetH2DIndex. Parameters have equal indeces: %d , %d", parIndex1, parIndex2)); return -1; } if(parIndex1>parIndex2) { BCLog::OutWarning("BCIntegrate::GetH2DIndex. First parameters must be smaller than second (sorry)."); return -1; } int index=0; for(int i=0;i<fNvar-1;i++) for(int j=i+1;j<fNvar;j++) { if(i==parIndex1 && j==parIndex2) return index; index++; } BCLog::OutWarning("BCIntegrate::GetH2DIndex. Invalid index combination."); return -1; }
BCIntegrate::BCIntegrationMethod BCIntegrate::GetIntegrationMethod | ( | ) | [inline] |
Definition at line 97 of file BCIntegrate.h.
{ return fIntegrationMethod; };
BCIntegrate::BCMarginalizationMethod BCIntegrate::GetMarginalizationMethod | ( | ) | [inline] |
Definition at line 102 of file BCIntegrate.h.
{ return fMarginalizationMethod; };
std::vector<double>* BCIntegrate::GetMarkovChainPoint | ( | ) | [inline] |
Definition at line 252 of file BCIntegrate.h.
{ return &fXmetro1; };
TTree* BCIntegrate::GetMarkovChainTree | ( | ) | [inline] |
Definition at line 247 of file BCIntegrate.h.
{ return fMarkovChainTree; };
double* BCIntegrate::GetMarkovChainValue | ( | ) | [inline] |
Returns the value of the loglikelihood at the point fXmetro1
Definition at line 262 of file BCIntegrate.h.
{ return &fMarkovChainValue; };
int* BCIntegrate::GetMCMCIteration | ( | ) | [inline] |
Returns the iteration of the MCMC
Definition at line 257 of file BCIntegrate.h.
{ return &fMCMCIteration; };
TMinuit * BCIntegrate::GetMinuit | ( | ) |
Definition at line 1248 of file BCIntegrate.cxx.
int BCIntegrate::GetMinuitErrorFlag | ( | ) | [inline] |
Definition at line 242 of file BCIntegrate.h.
{ return fMinuitErrorFlag; };
int BCIntegrate::GetNbins | ( | ) | [inline] |
Definition at line 235 of file BCIntegrate.h.
{ return fNbins; };
int BCIntegrate::GetNIterations | ( | ) | [inline] |
Definition at line 175 of file BCIntegrate.h.
{ return fNIterations; };
int BCIntegrate::GetNIterationsMax | ( | ) | [inline] |
Definition at line 170 of file BCIntegrate.h.
{ return fNIterationsMax; };
int BCIntegrate::GetNiterationsPerDimension | ( | ) | [inline] |
Definition at line 155 of file BCIntegrate.h.
{ return fNiterPerDimension; };
int BCIntegrate::GetNSamplesPer2DBin | ( | ) | [inline] |
Definition at line 160 of file BCIntegrate.h.
{ return fNSamplesPer2DBin; };
int BCIntegrate::GetNvar | ( | ) | [inline] |
Definition at line 165 of file BCIntegrate.h.
{ return fNvar; };
BCIntegrate::BCOptimizationMethod BCIntegrate::GetOptimizationMethod | ( | ) | [inline] |
Definition at line 107 of file BCIntegrate.h.
{ return fOptimizationMethod; };
BCIntegrate::BCOptimizationMethod BCIntegrate::GetOptimizationMethodMode | ( | ) | [inline] |
Definition at line 112 of file BCIntegrate.h.
{ return fOptimizationMethodMode; };
std::vector< double > BCIntegrate::GetProposalPointSA | ( | std::vector< double > | x, | |
int | t | |||
) |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. Delegates the generation to the appropriate method according to fSASchedule.
x | last state. | |
t | time iterator to determine current temperature. |
Definition at line 1539 of file BCIntegrate.cxx.
{ // do we have Cauchy (default), Boltzmann or custom annealing schedule? if (fSASchedule == BCIntegrate::kSABoltzmann) return GetProposalPointSABoltzmann(x, t); else if (fSASchedule == BCIntegrate::kSACauchy) return GetProposalPointSACauchy(x, t); else return GetProposalPointSACustom(x, t); }
std::vector< double > BCIntegrate::GetProposalPointSABoltzmann | ( | std::vector< double > | x, | |
int | t | |||
) |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. This method is used for Boltzmann annealing schedule.
x | last state. | |
t | time iterator to determine current temperature. |
Definition at line 1552 of file BCIntegrate.cxx.
{ std::vector<double> y; y.clear(); double new_val, norm; for (int i = 0; i < fNvar; i++) { norm = (fMax[i] - fMin[i]) * SATemperature(t) / 2.; new_val = x[i] + norm * fRandom->Gaus(); y.push_back(new_val); } return y; }
std::vector< double > BCIntegrate::GetProposalPointSACauchy | ( | std::vector< double > | x, | |
int | t | |||
) |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. This method is used for Cauchy annealing schedule.
x | last state. | |
t | time iterator to determine current temperature. |
Definition at line 1569 of file BCIntegrate.cxx.
{ std::vector<double> y; y.clear(); if (fNvar == 1) { double cauchy, new_val, norm; norm = (fMax[0] - fMin[0]) * SATemperature(t) / 2.; cauchy = tan(3.14159 * (fRandom->Rndm() - 0.5)); new_val = x[0] + norm * cauchy; y.push_back(new_val); } else { // use sampling to get radial n-dim Cauchy distribution // first generate a random point uniformly distributed on a // fNvar-dimensional hypersphere y = SAHelperGetRandomPointOnHypersphere(); // scale the vector by a random factor determined by the radial // part of the fNvar-dimensional Cauchy distribution double radial = SATemperature(t) * SAHelperGetRadialCauchy(); // scale y by radial part and the size of dimension i in phase space // afterwards, move by x for (int i = 0; i < fNvar; i++) y[i] = (fMax[i] - fMin[i]) * y[i] * radial / 2. + x[i]; } return y; }
std::vector< double > BCIntegrate::GetProposalPointSACustom | ( | std::vector< double > | x, | |
int | t | |||
) | [virtual] |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. This is a virtual method to be overridden by a user-defined custom proposal function.
x | last state. | |
t | time iterator to determine current temperature. |
Definition at line 1604 of file BCIntegrate.cxx.
{ BCLog::OutError("BCIntegrate::GetProposalPointSACustom : No custom proposal function defined"); return std::vector<double>(fNvar); }
double BCIntegrate::GetRandomPoint | ( | std::vector< double > & | x | ) |
Fills a vector of (flat) random numbers in the limits of the parameters and returns the probability at that point
x | A vector of doubles |
Definition at line 1064 of file BCIntegrate.cxx.
double BCIntegrate::GetRandomPointImportance | ( | std::vector< double > & | x | ) |
Fills a vector of random numbers in the limits of the parameters sampled by the sampling function and returns the probability at that point
x | A vector of doubles |
Definition at line 1075 of file BCIntegrate.cxx.
{ double p = 1.1; double g = 1.0; while (p>g) { GetRandomVector(x); for(int i=0;i<fNvar;i++) x[i] = fMin[i] + x[i] * (fMax[i]-fMin[i]); p = fRandom->Rndm(); g = EvalSampling(x); } return Eval(x); }
void BCIntegrate::GetRandomPointMetro | ( | std::vector< double > & | x | ) |
Fills a vector of random numbers in the limits of the parameters sampled by the probality function and returns the probability at that point (Metropolis)
x | A vector of doubles |
Definition at line 1118 of file BCIntegrate.cxx.
{ // get new point GetRandomVectorMetro(fXmetro1); // scale the point to the allowed region and stepsize int in=1; for(int i=0;i<fNvar;i++) { fXmetro1[i] = fXmetro0[i] + fXmetro1[i] * (fMax[i]-fMin[i]); // check whether the generated point is inside the allowed region if( fXmetro1[i]<fMin[i] || fXmetro1[i]>fMax[i] ) in=0; } // calculate the log probabilities and compare old and new point double p0 = fMarkovChainValue; // old point double p1 = 0; // new point int accept=0; if(in) { p1 = LogEval(fXmetro1); if(p1>=p0) accept=1; else { double r=log(fRandom->Rndm()); if(r<p1-p0) accept=1; } } // fill the return point after the decision if(accept) { // increase counter fNacceptedMCMC++; for(int i=0;i<fNvar;i++) { fXmetro0[i]=fXmetro1[i]; x[i]=fXmetro1[i]; fMarkovChainValue = p1; } } else for(int i=0;i<fNvar;i++) { x[i]=fXmetro0[i]; fXmetro1[i] = x[i]; fMarkovChainValue = p0; } fNmetro++; }
void BCIntegrate::GetRandomPointSamplingMetro | ( | std::vector< double > & | x | ) |
Fills a vector of random numbers in the limits of the parameters sampled by the sampling function and returns the probability at that point (Metropolis)
x | A vector of doubles |
Definition at line 1173 of file BCIntegrate.cxx.
{ // get new point GetRandomVectorMetro(fXmetro1); // scale the point to the allowed region and stepsize int in=1; for(int i=0;i<fNvar;i++) { fXmetro1[i] = fXmetro0[i] + fXmetro1[i] * (fMax[i]-fMin[i]); // check whether the generated point is inside the allowed region if( fXmetro1[i]<fMin[i] || fXmetro1[i]>fMax[i] ) in=0; } // calculate the log probabilities and compare old and new point double p0 = LogEvalSampling(fXmetro0); // old point double p1=0; // new point if(in) p1= LogEvalSampling(fXmetro1); // compare log probabilities int accept=0; if(in) { if(p1>=p0) accept=1; else { double r=log(fRandom->Rndm()); if(r<p1-p0) accept=1; } } // fill the return point after the decision if(accept) for(int i=0;i<fNvar;i++) { fXmetro0[i]=fXmetro1[i]; x[i]=fXmetro1[i]; } else for(int i=0;i<fNvar;i++) x[i]=fXmetro0[i]; fNmetro++; }
void BCIntegrate::GetRandomVector | ( | std::vector< double > & | x | ) |
void BCIntegrate::GetRandomVectorMetro | ( | std::vector< double > & | x | ) | [virtual] |
Definition at line 1234 of file BCIntegrate.cxx.
{ double * randx = new double[fNvar]; fRandom->RndmArray(fNvar, randx); for(int i=0;i<fNvar;i++) x[i] = 2.0 * (randx[i] - 0.5) * fMarkovChainStepSize; delete[] randx; randx = 0; }
double BCIntegrate::GetRelativePrecision | ( | ) | [inline] |
Definition at line 180 of file BCIntegrate.h.
{ return fRelativePrecision; };
BCIntegrate::BCSASchedule BCIntegrate::GetSASchedule | ( | ) | [inline] |
Definition at line 117 of file BCIntegrate.h.
{ return fSASchedule; };
double BCIntegrate::GetSAT0 | ( | ) | [inline] |
Returns the Simulated Annealing starting temperature.
Definition at line 267 of file BCIntegrate.h.
{ return fSAT0; }
double BCIntegrate::GetSATmin | ( | ) | [inline] |
Returns the Simulated Annealing threshhold temperature.
Definition at line 272 of file BCIntegrate.h.
{ return fSATmin; }
TTree* BCIntegrate::GetSATree | ( | ) | [inline] |
Definition at line 514 of file BCIntegrate.h.
{ return fTreeSA; };
void BCIntegrate::InitializeSATree | ( | ) |
Definition at line 1358 of file BCIntegrate.cxx.
{ if (fTreeSA) delete fTreeSA; fTreeSA = new TTree("SATree", "SATree"); fTreeSA->Branch("Iteration", &fSANIterations, "iteration/I"); fTreeSA->Branch("NParameters", &fNvar, "parameters/I"); fTreeSA->Branch("Temperature", &fSATemperature, "temperature/D"); fTreeSA->Branch("LogProbability", &fSALogProb, "log(probability)/D"); for (int i = 0; i < fNvar; ++i) fTreeSA->Branch(TString::Format("Parameter%i", i), &fSAx[i], TString::Format("parameter %i/D", i)); }
void BCIntegrate::InitMetro | ( | ) |
Initializes the Metropolis algorithm (for details see manual)
Definition at line 1095 of file BCIntegrate.cxx.
{ fNmetro=0; if (fXmetro0.size() <= 0) { // start in the center of the phase space for(int i=0;i<fNvar;i++) fXmetro0.push_back((fMin[i]+fMax[i])/2.0); } fMarkovChainValue = LogEval(fXmetro0); // run metropolis for a few times and dump the result... (to forget the initial position) std::vector <double> x; x.assign(fNvar,0.); for(int i=0;i<1000;i++) GetRandomPointMetro(x); fNmetro = 0; }
double BCIntegrate::IntegralImportance | ( | std::vector< double > | x | ) |
Perfoms the importance sampling Monte Carlo integration. For details see documentation.
x | An initial point in parameter space |
Definition at line 568 of file BCIntegrate.cxx.
{ // print debug information BCLog::OutDebug(Form("BCIntegrate::IntegralImportance. Integate over %i dimensions.", fNvar)); // get total number of iterations double Niter = pow(fNiterPerDimension, fNvar); // print if more than 100,000 iterations if(Niter>1e5) BCLog::OutDebug(Form("BCIntegrate::IntegralImportance. Total number of iterations: %d.", Niter)); // reset sum double sumI = 0; std::vector <double> randx; randx.assign(fNvar,0.); // prepare maximum value double pmax = 0.0; // loop over iterations for(int i = 0; i <= Niter; i++) { // get random point from sampling distribution GetRandomPointImportance(randx); // calculate probability at random point double val_f = Eval(randx); // calculate sampling distributions at that point double val_g = EvalSampling(randx); // add ratio to sum if (val_g > 0) sumI += val_f / val_g; // search for maximum probability if (val_f > pmax) { // set new maximum value pmax = val_f; // delete old best fit parameter values fBestFitParameters.clear(); // write best fit parameters for(int i = 0; i < fNvar; i++) fBestFitParameters.push_back(randx.at(i)); } // write intermediate results if((i+1)%100000 == 0) BCLog::OutDebug(Form("BCIntegrate::IntegralImportance. Iteration %d, integral: %d.", i+1, sumI/(i+1))); } // calculate integral double result=sumI/Niter; // print debug information BCLog::OutDebug(Form("BCIntegrate::IntegralImportance. Integral %f in %i iterations.", result, Niter)); return result; }
double BCIntegrate::IntegralMC | ( | std::vector< double > | x, | |
int * | varlist | |||
) |
Perfoms the Monte Carlo integration. For details see documentation.
x | An initial point in parameter space | |
varlist | A list of variables |
Definition at line 402 of file BCIntegrate.cxx.
{ SetVarList(varlist); return IntegralMC(x); }
double BCIntegrate::IntegralMC | ( | std::vector< double > | x | ) |
Definition at line 409 of file BCIntegrate.cxx.
{ // count the variables to integrate over int NvarNow=0; for(int i = 0; i < fNvar; i++) if(fVarlist[i]) NvarNow++; // print to log BCLog::OutDebug(Form(" --> Running MC integation over %i dimensions.", NvarNow)); BCLog::OutDebug(Form(" --> Maximum number of iterations: %i", GetNIterationsMax())); BCLog::OutDebug(Form(" --> Aimed relative precision: %e", GetRelativePrecision())); // calculate D (the integrated volume) double D = 1.0; for(int i = 0; i < fNvar; i++) if (fVarlist[i]) D = D * (fMax[i] - fMin[i]); // reset variables double pmax = 0.0; double sumW = 0.0; double sumW2 = 0.0; double integral = 0.0; double variance = 0.0; double relprecision = 1.0; std::vector <double> randx; randx.assign(fNvar, 0.0); // reset number of iterations fNIterations = 0; // iterate while precision is not reached and the number of iterations is lower than maximum number of iterations while ((fRelativePrecision < relprecision && fNIterationsMax > fNIterations) || fNIterations < 10) { // increase number of iterations fNIterations++; // get random numbers GetRandomVector(randx); // scale random numbers for(int i = 0; i < fNvar; i++) { if(fVarlist[i]) randx[i]=fMin[i]+randx[i]*(fMax[i]-fMin[i]); else randx[i]=x[i]; } // evaluate function at sampled point double value = Eval(randx); // add value to sum and sum of squares sumW += value; sumW2 += value * value; // search for maximum probability if (value > pmax) { // set new maximum value pmax = value; // delete old best fit parameter values fBestFitParameters.clear(); // write best fit parameters for(int i = 0; i < fNvar; i++) fBestFitParameters.push_back(randx.at(i)); } // calculate integral and variance integral = D * sumW / fNIterations; if (fNIterations%10000 == 0) { variance = (1.0 / double(fNIterations)) * (D * D * sumW2 / double(fNIterations) - integral * integral); double error = sqrt(variance); relprecision = error / integral; BCLog::OutDebug(Form("BCIntegrate::IntegralMC. Iteration %i, integral: %e +- %e.", fNIterations, integral, error)); } } fError = variance / fNIterations; // print to log BCLog::OutDebug(Form(" --> Result of integration: %e +- %e in %i iterations.", integral, sqrt(variance), fNIterations)); BCLog::OutDebug(Form(" --> Obtained relative precision: %e. ", sqrt(variance) / integral)); return integral; }
double BCIntegrate::IntegralMetro | ( | std::vector< double > | x | ) |
Perfoms the Metropolis Monte Carlo integration. For details see documentation.
x | An initial point in parameter space |
Definition at line 502 of file BCIntegrate.cxx.
{ // print debug information BCLog::OutDebug(Form("BCIntegrate::IntegralMetro. Integate over %i dimensions.", fNvar)); // get total number of iterations double Niter = pow(fNiterPerDimension, fNvar); // print if more than 100,000 iterations if(Niter>1e5) BCLog::OutDebug(Form(" --> Total number of iterations in Metropolis: %d.", Niter)); // reset sum double sumI = 0; // prepare Metropolis algorithm std::vector <double> randx; randx.assign(fNvar,0.); InitMetro(); // prepare maximum value double pmax = 0.0; // loop over iterations for(int i = 0; i <= Niter; i++) { // get random point from sampling distribution GetRandomPointSamplingMetro(randx); // calculate probability at random point double val_f = Eval(randx); // calculate sampling distributions at that point double val_g = EvalSampling(randx); // add ratio to sum if (val_g > 0) sumI += val_f / val_g; // search for maximum probability if (val_f > pmax) { // set new maximum value pmax = val_f; // delete old best fit parameter values fBestFitParameters.clear(); // write best fit parameters for(int i = 0; i < fNvar; i++) fBestFitParameters.push_back(randx.at(i)); } // write intermediate results if((i+1)%100000 == 0) BCLog::OutDebug(Form("BCIntegrate::IntegralMetro. Iteration %d, integral: %d.", i+1, sumI/(i+1))); } // calculate integral double result=sumI/Niter; // print debug information BCLog::OutDebug(Form(" --> Integral is %f in %i iterations.", result, Niter)); return result; }
double BCIntegrate::Integrate | ( | ) |
Does the integration over the un-normalized probability.
Definition at line 365 of file BCIntegrate.cxx.
{ std::vector <double> parameter; parameter.assign(fNvar, 0.0); BCLog::OutSummary( Form("Running numerical integration using %s (%s)", DumpIntegrationMethod().c_str(), DumpCubaIntegrationMethod().c_str())); switch(fIntegrationMethod) { case BCIntegrate::kIntMonteCarlo: return IntegralMC(parameter); case BCIntegrate::kIntMetropolis: return IntegralMetro(parameter); case BCIntegrate::kIntImportance: return IntegralImportance(parameter); case BCIntegrate::kIntCuba: #ifdef HAVE_CUBA_H return CubaIntegrate(); #else BCLog::OutError("!!! This version of BAT is compiled without Cuba."); BCLog::OutError(" Use other integration methods or install Cuba and recompile BAT."); #endif default: BCLog::OutError( Form("BCIntegrate::Integrate : Invalid integration method: %d", fIntegrationMethod)); } return 0; }
int BCIntegrate::IntegrateResetResults | ( | ) |
Reset all information on the best fit parameters.
Definition at line 354 of file BCIntegrate.cxx.
{ fBestFitParameters.clear(); fBestFitParameterErrors.clear(); fBestFitParametersMarginalized.clear(); // no errors return 1; }
double BCIntegrate::LogEval | ( | std::vector< double > | x | ) | [virtual] |
Evaluate the natural logarithm of the Eval function. For better numerical stability, this method should also be overloaded by the user.
x | The point in parameter space |
Reimplemented from BCEngineMCMC.
Reimplemented in BCModel.
Definition at line 313 of file BCIntegrate.cxx.
{ // this method should better also be overloaded return log(Eval(x)); }
double BCIntegrate::LogEvalSampling | ( | std::vector< double > | x | ) |
Evaluate the natural logarithm of the EvalSampling function. Method needs to be overloaded by the user.
x | The point in parameter space |
Definition at line 327 of file BCIntegrate.cxx.
{ return log(EvalSampling(x)); }
TH1D * BCIntegrate::Marginalize | ( | BCParameter * | parameter | ) |
Performs the marginalization with respect to one parameter.
parameter | The parameter w.r.t. which the marginalization is performed |
Definition at line 632 of file BCIntegrate.cxx.
{ BCLog::OutDebug(Form(" --> Marginalizing model wrt. parameter %s using %d.", parameter->GetName().data(), DumpMarginalizationMethod().c_str())); switch(fMarginalizationMethod) { case BCIntegrate::kMargMonteCarlo: return MarginalizeByIntegrate(parameter); case BCIntegrate::kMargMetropolis: return MarginalizeByMetro(parameter); default: BCLog::OutError( Form("BCIntegrate::Marginalize. Invalid marginalization method: %d. Return 0.", fMarginalizationMethod)); } return 0; }
TH2D * BCIntegrate::Marginalize | ( | BCParameter * | parameter1, | |
BCParameter * | parameter2 | |||
) |
Performs the marginalization with respect to two parameters.
parameter1 | The first parameter w.r.t. which the marginalization is performed | |
parameter2 | The second parameter w.r.t. which the marginalization is performed |
Definition at line 654 of file BCIntegrate.cxx.
{ switch(fMarginalizationMethod) { case BCIntegrate::kMargMonteCarlo: return MarginalizeByIntegrate(parameter1,parameter2); case BCIntegrate::kMargMetropolis: return MarginalizeByMetro(parameter1,parameter2); default: BCLog::OutError( Form("BCIntegrate::Marginalize. Invalid marginalization method: %d. Return 0.", fMarginalizationMethod)); } return 0; }
int BCIntegrate::MarginalizeAllByMetro | ( | const char * | name = "" |
) |
Performs the marginalization with respect to every single parameter as well as with respect all combinations to two parameters using the Metropolis algorithm.
name | Basename for the histograms (e.g. model name) |
Definition at line 817 of file BCIntegrate.cxx.
{ int niter=fNbins*fNbins*fNSamplesPer2DBin*fNvar; BCLog::OutDetail(Form(" --> Number of samples in Metropolis marginalization: %d.", niter)); // define 1D histograms for(int i=0;i<fNvar;i++) { double hmin1 = fx->at(i)->GetLowerLimit(); double hmax1 = fx->at(i)->GetUpperLimit(); TH1D * h1 = new TH1D( TString::Format("h%s_%s", name, fx->at(i)->GetName().data()),"", fNbins, hmin1, hmax1); fHProb1D.push_back(h1); } // define 2D histograms for(int i=0;i<fNvar-1;i++) for(int j=i+1;j<fNvar;j++) { double hmin1 = fx->at(i)->GetLowerLimit(); double hmax1 = fx->at(i)->GetUpperLimit(); double hmin2 = fx->at(j)->GetLowerLimit(); double hmax2 = fx->at(j)->GetUpperLimit(); TH2D * h2 = new TH2D( TString::Format("h%s_%s_%s", name, fx->at(i)->GetName().data(), fx->at(j)->GetName().data()),"", fNbins, hmin1, hmax1, fNbins, hmin2, hmax2); fHProb2D.push_back(h2); } // get number of 2d distributions int nh2d = fHProb2D.size(); BCLog::OutDetail(Form(" --> Marginalizing %d 1D distributions and %d 2D distributions.", fNvar, nh2d)); // prepare function fitting double dx = 0.; double dy = 0.; if (fFitFunctionIndexX >= 0) { dx = (fDataPointUpperBoundaries->GetValue(fFitFunctionIndexX) - fDataPointLowerBoundaries->GetValue(fFitFunctionIndexX)) / double(fErrorBandNbinsX); dx = (fDataPointUpperBoundaries->GetValue(fFitFunctionIndexY) - fDataPointLowerBoundaries->GetValue(fFitFunctionIndexY)) / double(fErrorBandNbinsY); fErrorBandXY = new TH2D( TString::Format("errorbandxy_%d",BCLog::GetHIndex()), "", fErrorBandNbinsX, fDataPointLowerBoundaries->GetValue(fFitFunctionIndexX) - 0.5 * dx, fDataPointUpperBoundaries->GetValue(fFitFunctionIndexX) + 0.5 * dx, fErrorBandNbinsY, fDataPointLowerBoundaries->GetValue(fFitFunctionIndexY) - 0.5 * dy, fDataPointUpperBoundaries->GetValue(fFitFunctionIndexY) + 0.5 * dy); fErrorBandXY->SetStats(kFALSE); for (int ix = 1; ix <= fErrorBandNbinsX; ++ix) for (int iy = 1; iy <= fErrorBandNbinsX; ++iy) fErrorBandXY->SetBinContent(ix, iy, 0.0); } // prepare Metro std::vector <double> randx; randx.assign(fNvar, 0.0); InitMetro(); // reset counter fNacceptedMCMC = 0; // run Metro and fill histograms for(int i=0;i<=niter;i++) { GetRandomPointMetro(randx); // save this point to the markov chain in the ROOT file if (fFlagWriteMarkovChain) { fMCMCIteration = i; fMarkovChainTree->Fill(); } for(int j=0;j<fNvar;j++) fHProb1D[j]->Fill( randx[j] ); int ih=0; for(int j=0;j<fNvar-1;j++) for(int k=j+1;k<fNvar;k++) { fHProb2D[ih]->Fill(randx[j],randx[k]); ih++; } if((i+1)%100000==0) BCLog::OutDebug(Form("BCIntegrate::MarginalizeAllByMetro. %d samples done.",i+1)); // function fitting if (fFitFunctionIndexX >= 0) { // loop over all possible x values ... if (fErrorBandContinuous) { double x = 0; for (int ix = 0; ix < fErrorBandNbinsX; ix++) { // calculate x x = fErrorBandXY->GetXaxis()->GetBinCenter(ix + 1); // calculate y std::vector <double> xvec; xvec.push_back(x); double y = FitFunction(xvec, randx); xvec.clear(); // fill histogram fErrorBandXY->Fill(x, y); } } // ... or evaluate at the data point x-values else { int ndatapoints = int(fErrorBandX.size()); double x = 0; for (int ix = 0; ix < ndatapoints; ++ix) { // calculate x x = fErrorBandX.at(ix); // calculate y std::vector <double> xvec; xvec.push_back(x); double y = FitFunction(xvec, randx); xvec.clear(); // fill histogram fErrorBandXY->Fill(x, y); } } } } // normalize histograms for(int i=0;i<fNvar;i++) fHProb1D[i]->Scale( 1./fHProb1D[i]->Integral("width") ); for (int i=0;i<nh2d;i++) fHProb2D[i]->Scale( 1./fHProb2D[i]->Integral("width") ); if (fFitFunctionIndexX >= 0) fErrorBandXY->Scale(1.0/fErrorBandXY->Integral() * fErrorBandXY->GetNbinsX()); if (fFitFunctionIndexX >= 0) { for (int ix = 1; ix <= fErrorBandNbinsX; ix++) { double sum = 0; for (int iy = 1; iy <= fErrorBandNbinsY; iy++) sum += fErrorBandXY->GetBinContent(ix, iy); for (int iy = 1; iy <= fErrorBandNbinsY; iy++) { double newvalue = fErrorBandXY->GetBinContent(ix, iy) / sum; fErrorBandXY->SetBinContent(ix, iy, newvalue); } } } BCLog::OutDebug(Form("BCIntegrate::MarginalizeAllByMetro done with %i trials and %i accepted trials. Efficiency is %f",fNmetro, fNacceptedMCMC, double(fNacceptedMCMC)/double(fNmetro))); return fNvar+nh2d; }
TH1D * BCIntegrate::MarginalizeByIntegrate | ( | BCParameter * | parameter | ) |
Performs the marginalization with respect to one parameter using the simple Monte Carlo technique.
parameter | The parameter w.r.t. which the marginalization is performed |
Definition at line 673 of file BCIntegrate.cxx.
{ // set parameter to marginalize ResetVarlist(1); int index = parameter->GetIndex(); UnsetVar(index); // define histogram double hmin = parameter->GetLowerLimit(); double hmax = parameter->GetUpperLimit(); double hdx = (hmax - hmin) / double(fNbins); TH1D * hist = new TH1D("hist","", fNbins, hmin, hmax); // integrate std::vector <double> randx; randx.assign(fNvar, 0.); for(int i=0;i<=fNbins;i++) { randx[index] = hmin + (double)i * hdx; double val = IntegralMC(randx); hist->Fill(randx[index], val); } // normalize hist->Scale( 1./hist->Integral("width") ); return hist; }
TH2D * BCIntegrate::MarginalizeByIntegrate | ( | BCParameter * | parameter1, | |
BCParameter * | parameter2 | |||
) |
Performs the marginalization with respect to two parameters using the simple Monte Carlo technique.
parameter1 | The first parameter w.r.t. which the marginalization is performed | |
parameter2 | The second parameter w.r.t. which the marginalization is performed |
Definition at line 704 of file BCIntegrate.cxx.
{ // set parameter to marginalize ResetVarlist(1); int index1 = parameter1->GetIndex(); UnsetVar(index1); int index2 = parameter2->GetIndex(); UnsetVar(index2); // define histogram double hmin1 = parameter1->GetLowerLimit(); double hmax1 = parameter1->GetUpperLimit(); double hdx1 = (hmax1 - hmin1) / double(fNbins); double hmin2 = parameter2->GetLowerLimit(); double hmax2 = parameter2->GetUpperLimit(); double hdx2 = (hmax2 - hmin2) / double(fNbins); TH2D * hist = new TH2D(Form("hist_%s_%s", parameter1->GetName().data(), parameter2->GetName().data()),"", fNbins, hmin1, hmax1, fNbins, hmin2, hmax2); // integrate std::vector <double> randx; randx.assign(fNvar, 0.0); for(int i=0;i<=fNbins;i++) { randx[index1] = hmin1 + (double)i * hdx1; for(int j=0;j<=fNbins;j++) { randx[index2] = hmin2 + (double)j * hdx2; double val = IntegralMC(randx); hist->Fill(randx[index1],randx[index2], val); } } // normalize hist->Scale(1.0/hist->Integral("width")); return hist; }
TH2D * BCIntegrate::MarginalizeByMetro | ( | BCParameter * | parameter1, | |
BCParameter * | parameter2 | |||
) |
Performs the marginalization with respect to two parameters using the Metropolis algorithm.
parameter1 | The first parameter w.r.t. which the marginalization is performed | |
parameter2 | The second parameter w.r.t. which the marginalization is performed |
Definition at line 781 of file BCIntegrate.cxx.
{ int niter=fNbins*fNbins*fNSamplesPer2DBin*fNvar; // set parameter to marginalize int index1 = parameter1->GetIndex(); int index2 = parameter2->GetIndex(); // define histogram double hmin1 = parameter1->GetLowerLimit(); double hmax1 = parameter1->GetUpperLimit(); double hmin2 = parameter2->GetLowerLimit(); double hmax2 = parameter2->GetUpperLimit(); TH2D * hist = new TH2D(Form("hist_%s_%s", parameter1->GetName().data(), parameter2->GetName().data()),"", fNbins, hmin1, hmax1, fNbins, hmin2, hmax2); // prepare Metro std::vector <double> randx; randx.assign(fNvar, 0.0); InitMetro(); for(int i=0;i<=niter;i++) { GetRandomPointMetro(randx); hist->Fill(randx[index1],randx[index2]); } // normalize hist->Scale(1.0/hist->Integral("width")); return hist; }
TH1D * BCIntegrate::MarginalizeByMetro | ( | BCParameter * | parameter | ) |
Performs the marginalization with respect to one parameter using the Metropolis algorithm.
parameter | The parameter w.r.t. which the marginalization is performed |
Definition at line 747 of file BCIntegrate.cxx.
{ int niter = fMarkovChainNIterations; if (fMarkovChainAutoN == true) niter = fNbins*fNbins*fNSamplesPer2DBin*fNvar; BCLog::OutDetail(Form(" --> Number of samples in Metropolis marginalization: %d.", niter)); // set parameter to marginalize int index = parameter->GetIndex(); // define histogram double hmin = parameter->GetLowerLimit(); double hmax = parameter->GetUpperLimit(); TH1D * hist = new TH1D("hist","", fNbins, hmin, hmax); // prepare Metro std::vector <double> randx; randx.assign(fNvar, 0.0); InitMetro(); for(int i=0;i<=niter;i++) { GetRandomPointMetro(randx); hist->Fill(randx[index]); } // normalize hist->Scale(1.0/hist->Integral("width")); return hist; }
void BCIntegrate::MCMCFillErrorBand | ( | ) | [private] |
Definition at line 2061 of file BCIntegrate.cxx.
{ if (!fFillErrorBand) return; // function fitting if (fFitFunctionIndexX < 0) return; // loop over all possible x values ... if (fErrorBandContinuous) { double x = 0; for (int ix = 0; ix < fErrorBandNbinsX; ix++) { // calculate x x = fErrorBandXY->GetXaxis()->GetBinCenter(ix + 1); // calculate y std::vector <double> xvec; xvec.push_back(x); // loop over all chains for (int ichain = 0; ichain < MCMCGetNChains(); ++ichain) { // calculate y double y = FitFunction(xvec, MCMCGetx(ichain)); // fill histogram fErrorBandXY->Fill(x, y); } xvec.clear(); } } // ... or evaluate at the data point x-values else { int ndatapoints = int(fErrorBandX.size()); double x = 0; for (int ix = 0; ix < ndatapoints; ++ix) { // calculate x x = fErrorBandX.at(ix); // calculate y std::vector <double> xvec; xvec.push_back(x); // loop over all chains for (int ichain = 0; ichain < MCMCGetNChains(); ++ichain) { // calculate y double y = FitFunction(xvec, MCMCGetx(ichain)); // fill histogram fErrorBandXY->Fill(x, y); } xvec.clear(); } } }
void BCIntegrate::MCMCIterationInterface | ( | ) | [private, virtual] |
Reimplemented from BCEngineMCMC.
Definition at line 2048 of file BCIntegrate.cxx.
{ // what's within this method will be executed // for every iteration of the MCMC // fill error band MCMCFillErrorBand(); // do user defined stuff MCMCUserIterationInterface(); }
virtual void BCIntegrate::MCMCUserIterationInterface | ( | ) | [inline, virtual] |
void BCIntegrate::ResetVarlist | ( | int | v | ) |
Sets all values of the variable list to a particular value The value
Definition at line 299 of file BCIntegrate.cxx.
double BCIntegrate::SAHelperGetRadialCauchy | ( | ) |
Generates the radial part of a n-dimensional Cauchy distribution. Helper function for Cauchy annealing.
Definition at line 1657 of file BCIntegrate.cxx.
{ // theta is sampled from a rather complicated distribution, // so first we create a lookup table with 10000 random numbers // once and then, each time we need a new random number, // we just look it up in the table. double theta; // static vectors for theta-sampling-map static double map_u[10001]; static double map_theta[10001]; static bool initialized = false; static int map_dimension = 0; // is the lookup-table already initialized? if not, do it! if (!initialized || map_dimension != fNvar) { double init_theta; double beta = SAHelperSinusToNIntegral(fNvar - 1, 1.57079632679); for (int i = 0; i <= 10000; i++) { init_theta = 3.14159265 * (double)i / 5000.; map_theta[i] = init_theta; map_u[i] = SAHelperSinusToNIntegral(fNvar - 1, init_theta) / beta; } map_dimension = fNvar; initialized = true; } // initializing is done. // generate uniform random number for sampling double u = fRandom->Rndm(); // Find the two elements just greater than and less than u // using a binary search (O(log(N))). int lo = 0; int up = 10000; int mid; while (up != lo) { mid = ((up - lo + 1) / 2) + lo; if (u >= map_u[mid]) lo = mid; else up = mid - 1; } up++; // perform linear interpolation: theta = map_theta[lo] + (u - map_u[lo]) / (map_u[up] - map_u[lo]) * (map_theta[up] - map_theta[lo]); return tan(theta); }
std::vector< double > BCIntegrate::SAHelperGetRandomPointOnHypersphere | ( | ) |
Generates a uniform distributed random point on the surface of a fNvar-dimensional Hypersphere. Used as a helper to generate proposal points for Cauchy annealing.
Definition at line 1612 of file BCIntegrate.cxx.
{ std::vector<double> rand_point(fNvar); // This method can only be called with fNvar >= 2 since the 1-dim case // is already hard wired into the Cauchy annealing proposal function. // To speed things up, hard-code fast method for 2 and dimensions. // The algorithm for 2D can be found at // http://mathworld.wolfram.com/CirclePointPicking.html // For 3D just using ROOT's algorithm. if (fNvar == 2) { double x1, x2, s; do { x1 = fRandom->Rndm() * 2. - 1.; x2 = fRandom->Rndm() * 2. - 1.; s = x1*x1 + x2*x2; } while (s >= 1); rand_point[0] = (x1*x1 - x2*x2) / s; rand_point[1] = (2.*x1*x2) / s; } else if (fNvar == 3) { fRandom->Sphere(rand_point[0], rand_point[1], rand_point[2], 1.0); } else { double s = 0., gauss_num; for (int i = 0; i < fNvar; i++) { gauss_num = fRandom->Gaus(); rand_point[i] = gauss_num; s += gauss_num * gauss_num; } s = sqrt(s); for (int i = 0; i < fNvar; i++) rand_point[i] = rand_point[i] / s; } return rand_point; }
double BCIntegrate::SAHelperSinusToNIntegral | ( | int | dim, | |
double | theta | |||
) |
Returns the Integral of sin^dim from 0 to theta. Helper function needed for generating Cauchy distributions.
Definition at line 1714 of file BCIntegrate.cxx.
{ if (dim < 1) return theta; else if (dim == 1) return (1. - cos(theta)); else if (dim == 2) return 0.5 * (theta - sin(theta) * cos(theta)); else if (dim == 3) return (2. - sin(theta) * sin(theta) * cos(theta) - 2. * cos(theta)) / 3.; else return - pow(sin(theta), (double)(dim - 1)) * cos(theta) / (double)dim + (double)(dim - 1) / (double)dim * SAHelperSinusToNIntegral(dim - 2, theta); }
void BCIntegrate::SAInitialize | ( | ) |
Definition at line 2121 of file BCIntegrate.cxx.
double BCIntegrate::SATemperature | ( | double | t | ) |
Temperature annealing schedule for use with Simulated Annealing. Delegates to the appropriate method according to fSASchedule.
t | iterator for lowering the temperature over time. |
Definition at line 1504 of file BCIntegrate.cxx.
{ // do we have Cauchy (default), Boltzmann or custom annealing schedule? if (fSASchedule == BCIntegrate::kSABoltzmann) return SATemperatureBoltzmann(t); else if (fSASchedule == BCIntegrate::kSACauchy) return SATemperatureCauchy(t); else return SATemperatureCustom(t); }
double BCIntegrate::SATemperatureBoltzmann | ( | double | t | ) |
Temperature annealing schedule for use with Simulated Annealing. This method is used for Boltzmann annealing schedule.
t | iterator for lowering the temperature over time. |
Definition at line 1517 of file BCIntegrate.cxx.
{ return fSAT0 / log((double)(t + 1)); }
double BCIntegrate::SATemperatureCauchy | ( | double | t | ) |
Temperature annealing schedule for use with Simulated Annealing. This method is used for Cauchy annealing schedule.
t | iterator for lowering the temperature over time. |
Definition at line 1524 of file BCIntegrate.cxx.
{ return fSAT0 / (double)t; }
double BCIntegrate::SATemperatureCustom | ( | double | t | ) | [virtual] |
Temperature annealing schedule for use with Simulated Annealing. This is a virtual method to be overridden by a user-defined custom temperature schedule.
t | iterator for lowering the temperature over time. |
Definition at line 1531 of file BCIntegrate.cxx.
{ BCLog::OutError("BCIntegrate::SATemperatureCustom : No custom temperature schedule defined"); return 0.; }
void BCIntegrate::SetAbsolutePrecision | ( | double | absprecision | ) | [inline] |
Set absolute precision of the numerical integation
Definition at line 343 of file BCIntegrate.h.
{ fAbsolutePrecision = absprecision; };
void BCIntegrate::SetCubaIntegrationMethod | ( | BCIntegrate::BCCubaMethod | type | ) |
Set Cuba integration method
Definition at line 1800 of file BCIntegrate.cxx.
{ #ifdef HAVE_CUBA_H switch(type) { case BCIntegrate::kCubaVegas: case BCIntegrate::kCubaSuave: fCubaIntegrationMethod = type; return; case BCIntegrate::kCubaDivonne: case BCIntegrate::kCubaCuhre: BCLog::OutError(TString::Format( "BAT does not yet support global setting of Cuba integration method to %s. " "To use this method use explicit call to CubaIntegrate() with arguments.", DumpCubaIntegrationMethod(type).c_str())); return; default: BCLog::OutError(TString::Format("Integration method of type %d is not defined for Cuba",type)); return; } #else BCLog::OutWarning("!!! This version of BAT is compiled without Cuba."); BCLog::OutWarning(" Setting Cuba integration method will have no effect."); #endif }
void BCIntegrate::SetCubaMaxEval | ( | int | n | ) | [inline] |
Set maximum number of evaluations in Cuba integration
Definition at line 357 of file BCIntegrate.h.
{ fCubaMaxEval = n; };
void BCIntegrate::SetCubaMinEval | ( | int | n | ) | [inline] |
Set minimum number of evaluations in Cuba integration
Definition at line 352 of file BCIntegrate.h.
{ fCubaMinEval = n; };
void BCIntegrate::SetCubaSuaveFlatness | ( | double | p | ) | [inline] |
Set flatness for Cuba Suave
Definition at line 382 of file BCIntegrate.h.
{ fCubaSuaveFlatness = p; }
void BCIntegrate::SetCubaSuaveNNew | ( | int | n | ) | [inline] |
Set number of new integrand evaluations in each subdivision for Cuba Suave
Definition at line 377 of file BCIntegrate.h.
{ fCubaSuaveNNew = n; };
void BCIntegrate::SetCubaVegasNIncrease | ( | int | n | ) | [inline] |
Set increase in number of evaluations per iteration for Cuba Vegas
Definition at line 372 of file BCIntegrate.h.
{ fCubaVegasNIncrease = n; };
void BCIntegrate::SetCubaVegasNStart | ( | int | n | ) | [inline] |
Set initial number of evaluations per iteration for Cuba Vegas
Definition at line 367 of file BCIntegrate.h.
{ fCubaVegasNStart = n; };
void BCIntegrate::SetCubaVerbosityLevel | ( | int | n | ) | [inline] |
Set verbosity level of Cuba integration
Definition at line 362 of file BCIntegrate.h.
{ fCubaVerbosity = n; };
void BCIntegrate::SetDataPointLowerBoundaries | ( | BCDataPoint * | datasetlowerboundaries | ) | [inline] |
Sets the data point containing the lower boundaries of possible data values
Definition at line 431 of file BCIntegrate.h.
{ fDataPointLowerBoundaries = datasetlowerboundaries; };
void BCIntegrate::SetDataPointLowerBoundary | ( | int | index, | |
double | lowerboundary | |||
) | [inline] |
Sets the lower boundary of possible data values for a particular variable
Definition at line 443 of file BCIntegrate.h.
{ fDataPointLowerBoundaries -> SetValue(index, lowerboundary); };
void BCIntegrate::SetDataPointUpperBoundaries | ( | BCDataPoint * | datasetupperboundaries | ) | [inline] |
Sets the data point containing the upper boundaries of possible data values
Definition at line 437 of file BCIntegrate.h.
{ fDataPointUpperBoundaries = datasetupperboundaries; };
void BCIntegrate::SetDataPointUpperBoundary | ( | int | index, | |
double | upperboundary | |||
) | [inline] |
Sets the upper boundary of possible data values for a particular variable
Definition at line 449 of file BCIntegrate.h.
{ fDataPointUpperBoundaries -> SetValue(index, upperboundary); };
void BCIntegrate::SetErrorBandHisto | ( | TH2D * | h | ) | [inline] |
void BCIntegrate::SetFillErrorBand | ( | bool | flag = true |
) | [inline] |
Definition at line 403 of file BCIntegrate.h.
{ fFillErrorBand=flag; };
void BCIntegrate::SetFitFunctionIndexX | ( | int | index | ) | [inline] |
Sets index of the x values in function fits.
index | Index of the x values |
Definition at line 415 of file BCIntegrate.h.
{ fFitFunctionIndexX = index; };
void BCIntegrate::SetFitFunctionIndexY | ( | int | index | ) | [inline] |
Sets index of the y values in function fits.
index | Index of the y values |
Definition at line 421 of file BCIntegrate.h.
{ fFitFunctionIndexY = index; };
void BCIntegrate::SetFitFunctionIndices | ( | int | indexx, | |
int | indexy | |||
) | [inline] |
Definition at line 424 of file BCIntegrate.h.
{ this -> SetFitFunctionIndexX(indexx); this -> SetFitFunctionIndexY(indexy); };
void BCIntegrate::SetFlagIgnorePrevOptimization | ( | bool | flag | ) | [inline] |
Definition at line 284 of file BCIntegrate.h.
{ fFlagIgnorePrevOptimization = flag; };
void BCIntegrate::SetFlagWriteSAToFile | ( | bool | flag | ) | [inline] |
Definition at line 504 of file BCIntegrate.h.
{ fFlagWriteSAToFile = flag; };
void BCIntegrate::SetIntegrationMethod | ( | BCIntegrate::BCIntegrationMethod | method | ) |
method | The integration method |
Definition at line 342 of file BCIntegrate.cxx.
{ #ifdef HAVE_CUBA_H fIntegrationMethod = method; #else BCLog::OutWarning("!!! This version of BAT is compiled without Cuba."); BCLog::OutWarning(" Monte Carlo Sampled Mean integration method will be used."); BCLog::OutWarning(" To be able to use Cuba integration, install Cuba and recompile BAT."); #endif }
void BCIntegrate::SetMarginalizationMethod | ( | BCIntegrate::BCMarginalizationMethod | method | ) | [inline] |
method | The marginalization method |
Definition at line 306 of file BCIntegrate.h.
{ fMarginalizationMethod = method; };
void BCIntegrate::SetMarkovChainAutoN | ( | bool | flag | ) | [inline] |
Sets a flag for automatically calculating the number of iterations
Definition at line 482 of file BCIntegrate.h.
{ fMarkovChainAutoN = flag; };
void BCIntegrate::SetMarkovChainInitialPosition | ( | std::vector< double > | position | ) |
Sets the initial position for the Markov chain
Definition at line 202 of file BCIntegrate.cxx.
void BCIntegrate::SetMarkovChainNIterations | ( | int | niterations | ) | [inline] |
Sets the number of iterations in the markov chain
Definition at line 476 of file BCIntegrate.h.
{ fMarkovChainNIterations = niterations; fMarkovChainAutoN = false; }
void BCIntegrate::SetMarkovChainStepSize | ( | double | stepsize | ) | [inline] |
Sets the step size for Markov chains
Definition at line 471 of file BCIntegrate.h.
{ fMarkovChainStepSize = stepsize; };
void BCIntegrate::SetMarkovChainTree | ( | TTree * | tree | ) | [inline] |
Sets the ROOT tree containing the Markov chain
Definition at line 462 of file BCIntegrate.h.
{ fMarkovChainTree = tree; };
void BCIntegrate::SetMinuitArlist | ( | double * | arglist | ) | [inline] |
Definition at line 280 of file BCIntegrate.h.
{ fMinuitArglist[0] = arglist[0]; fMinuitArglist[1] = arglist[1]; };
void BCIntegrate::SetMode | ( | std::vector< double > | mode | ) |
Sets mode
Definition at line 1732 of file BCIntegrate.cxx.
{ if((int)mode.size() == fNvar) { fBestFitParameters.clear(); for (int i = 0; i < fNvar; i++) fBestFitParameters.push_back(mode[i]); } }
void BCIntegrate::SetNbins | ( | int | nbins, | |
int | index = -1 | |||
) |
n | Number of bins per dimension for the marginalized distributions. Default is 100. Minimum number allowed is 2. Set the number of bins for the marginalized distribution of a parameter. | |
nbins | Number of bins (default = 100) | |
index | Index of the parameter. |
Definition at line 231 of file BCIntegrate.cxx.
{ if (fNvar == 0) return; // check if index is in range if (index >= fNvar) { BCLog::OutWarning("BCIntegrate::SetNbins : Index out of range."); return; } // set for all parameters at once else if (index < 0) { for (int i = 0; i < fNvar; ++i) SetNbins(nbins, i); return; } // sanity check for nbins if (nbins <= 0) nbins = 10; fMCMCH1NBins[index] = nbins; return; // if(n<2) { // BCLog::OutWarning("BCIntegrate::SetNbins. Number of bins less than 2 makes no sense. Setting to 2."); // n=2; // } // MCMCSetH1NBins(n, -1); // fNbins=n; // fMCMCH1NBins = n; // fMCMCH2NBinsX = n; // fMCMCH2NBinsY = n; }
void BCIntegrate::SetNIterationsMax | ( | int | niterations | ) | [inline] |
niterations | The maximum number of iterations for Monte Carlo integration |
Definition at line 332 of file BCIntegrate.h.
{ fNIterationsMax = niterations; };
void BCIntegrate::SetNiterationsPerDimension | ( | int | niterations | ) | [inline] |
niterations | Number of iterations per dimension for Monte Carlo integration. |
Definition at line 321 of file BCIntegrate.h.
{ fNiterPerDimension = niterations; };
void BCIntegrate::SetNSamplesPer2DBin | ( | int | n | ) | [inline] |
n | Number of samples per 2D bin per variable in the Metropolis marginalization. Default is 100. |
Definition at line 327 of file BCIntegrate.h.
{ fNSamplesPer2DBin = n; };
void BCIntegrate::SetOptimizationMethod | ( | BCIntegrate::BCOptimizationMethod | method | ) | [inline] |
method | The mode finding method |
Definition at line 311 of file BCIntegrate.h.
{ fOptimizationMethod = method; };
void BCIntegrate::SetParameters | ( | BCParameterSet * | par | ) |
par | The parameter set which gets translated into array needed for the Monte Carlo integration |
Definition at line 162 of file BCIntegrate.cxx.
{ DeleteVarList(); fx = par; fNvar = fx->size(); fMin = new double[fNvar]; fMax = new double[fNvar]; fVarlist = new int[fNvar]; ResetVarlist(1); for(int i=0;i<fNvar;i++) { fMin[i]=(fx->at(i))->GetLowerLimit(); fMax[i]=(fx->at(i))->GetUpperLimit(); } fXmetro0.clear(); for(int i=0;i<fNvar;i++) fXmetro0.push_back((fMin[i]+fMax[i])/2.0); fXmetro1.clear(); fXmetro1.assign(fNvar,0.); fMCMCBoundaryMin.clear(); fMCMCBoundaryMax.clear(); for(int i=0;i<fNvar;i++) { fMCMCBoundaryMin.push_back(fMin[i]); fMCMCBoundaryMax.push_back(fMax[i]); fMCMCFlagsFillHistograms.push_back(true); } for (int i = int(fMCMCH1NBins.size()); i<fNvar; ++i) fMCMCH1NBins.push_back(100); fMCMCNParameters = fNvar; }
void BCIntegrate::SetRelativePrecision | ( | double | relprecision | ) | [inline] |
relprecision | The relative precision envisioned for Monte Carlo integration |
Definition at line 338 of file BCIntegrate.h.
{ fRelativePrecision = relprecision; };
void BCIntegrate::SetSASchedule | ( | BCIntegrate::BCSASchedule | schedule | ) | [inline] |
method | The Simulated Annealing schedule |
Definition at line 316 of file BCIntegrate.h.
{ fSASchedule = schedule; };
void BCIntegrate::SetSAT0 | ( | double | T0 | ) | [inline] |
T0 | new value for Simulated Annealing starting temperature. |
Definition at line 496 of file BCIntegrate.h.
{ fSAT0 = T0; }
void BCIntegrate::SetSATmin | ( | double | Tmin | ) | [inline] |
Tmin | new value for Simulated Annealing threshold temperature. |
Definition at line 501 of file BCIntegrate.h.
{ fSATmin = Tmin; }
void BCIntegrate::SetSATree | ( | TTree * | tree | ) | [inline] |
Definition at line 509 of file BCIntegrate.h.
{ fTreeSA = tree; };
void BCIntegrate::SetVar | ( | int | index | ) | [inline] |
index | The index of the variable to be set |
Definition at line 298 of file BCIntegrate.h.
{fVarlist[index]=1;};
void BCIntegrate::SetVarList | ( | int * | varlist | ) |
varlist | A list of parameters |
Definition at line 292 of file BCIntegrate.cxx.
void BCIntegrate::UnsetFillErrorBand | ( | ) | [inline] |
Definition at line 409 of file BCIntegrate.h.
{ fFillErrorBand=false; };
void BCIntegrate::UnsetVar | ( | int | index | ) | [inline] |
Set value of a particular integration variable to 0.
index | The index of the variable |
Definition at line 538 of file BCIntegrate.h.
{ fVarlist[index] = 0; };
void BCIntegrate::WriteMarkovChain | ( | bool | flag | ) | [inline] |
Flag for writing Markov chain to ROOT file (true) or not (false)
Definition at line 455 of file BCIntegrate.h.
{ fFlagWriteMarkovChain = flag; fMCMCFlagWriteChainToFile = flag; fMCMCFlagWritePreRunToFile = flag; };
double BCIntegrate::fAbsolutePrecision [private] |
Requested relative precision of the integation
Definition at line 1016 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fBestFitParameterErrors [protected] |
Definition at line 877 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fBestFitParameters [protected] |
A vector of best fit parameters estimated from the global probability and the estimate on their uncertainties
Definition at line 876 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fBestFitParametersMarginalized [protected] |
A vector of best fit parameters estimated from the marginalized probability
Definition at line 881 of file BCIntegrate.h.
Cuba integration method
Definition at line 1019 of file BCIntegrate.h.
int BCIntegrate::fCubaMaxEval [private] |
Maximum number of evaluations in Cuba integration
Definition at line 1025 of file BCIntegrate.h.
int BCIntegrate::fCubaMinEval [private] |
Minimum number of evaluations in Cuba integration
Definition at line 1022 of file BCIntegrate.h.
double BCIntegrate::fCubaSuaveFlatness [private] |
Flatness for Cuba Suave
Definition at line 1040 of file BCIntegrate.h.
int BCIntegrate::fCubaSuaveNNew [private] |
Number of new integrand evaluations in each subdivision for Cuba Suave
Definition at line 1037 of file BCIntegrate.h.
int BCIntegrate::fCubaVegasNIncrease [private] |
Increase in number of evaluations per iteration for Cuba Vegas
Definition at line 1034 of file BCIntegrate.h.
int BCIntegrate::fCubaVegasNStart [private] |
Initial number of evaluations per iteration for Cuba Vegas
Definition at line 1031 of file BCIntegrate.h.
int BCIntegrate::fCubaVerbosity [private] |
Verbosity level of Cuba integration
Definition at line 1028 of file BCIntegrate.h.
std::vector<bool> BCIntegrate::fDataFixedValues [protected] |
Definition at line 871 of file BCIntegrate.h.
BCDataPoint* BCIntegrate::fDataPointLowerBoundaries [protected] |
data point containing the lower boundaries of possible data values
Definition at line 865 of file BCIntegrate.h.
BCDataPoint* BCIntegrate::fDataPointUpperBoundaries [protected] |
data point containing the upper boundaries of possible data values
Definition at line 869 of file BCIntegrate.h.
double BCIntegrate::fError [private] |
The uncertainty in the most recent Monte Carlo integration
Definition at line 1044 of file BCIntegrate.h.
bool BCIntegrate::fErrorBandContinuous [protected] |
A flag for single point evaluation of the error "band"
Definition at line 902 of file BCIntegrate.h.
int BCIntegrate::fErrorBandNbinsX [protected] |
Number of X bins of the error band histogram
Definition at line 911 of file BCIntegrate.h.
int BCIntegrate::fErrorBandNbinsY [protected] |
Nnumber of Y bins of the error band histogram
Definition at line 915 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fErrorBandX [protected] |
Definition at line 903 of file BCIntegrate.h.
TH2D* BCIntegrate::fErrorBandXY [protected] |
The error band histogram
Definition at line 907 of file BCIntegrate.h.
bool BCIntegrate::fFillErrorBand [protected] |
Flag whether or not to fill the error band
Definition at line 893 of file BCIntegrate.h.
int BCIntegrate::fFitFunctionIndexX [protected] |
The indices for function fits
Definition at line 897 of file BCIntegrate.h.
int BCIntegrate::fFitFunctionIndexY [protected] |
Definition at line 898 of file BCIntegrate.h.
double BCIntegrate::fFlagIgnorePrevOptimization [protected] |
Flag for ignoring older results of minimization
Definition at line 926 of file BCIntegrate.h.
bool BCIntegrate::fFlagWriteMarkovChain [protected] |
Flag for writing Markov chain to file
Definition at line 930 of file BCIntegrate.h.
bool BCIntegrate::fFlagWriteSAToFile [protected] |
Flag deciding whether to write SA to file or not.
Definition at line 954 of file BCIntegrate.h.
std::vector<TH1D *> BCIntegrate::fHProb1D [protected] |
Vector of TH1D histograms for marginalized probability distributions
Definition at line 885 of file BCIntegrate.h.
std::vector<TH2D *> BCIntegrate::fHProb2D [protected] |
Vector of TH2D histograms for marginalized probability distributions
Definition at line 889 of file BCIntegrate.h.
Current integration method
Definition at line 985 of file BCIntegrate.h.
Current marginalization method
Definition at line 989 of file BCIntegrate.h.
bool BCIntegrate::fMarkovChainAutoN [protected] |
Definition at line 861 of file BCIntegrate.h.
int BCIntegrate::fMarkovChainNIterations [protected] |
Definition at line 859 of file BCIntegrate.h.
double BCIntegrate::fMarkovChainStepSize [protected] |
Step size in the Markov chain relative to min and max
Definition at line 857 of file BCIntegrate.h.
TTree* BCIntegrate::fMarkovChainTree [protected] |
ROOT tree containing the Markov chain
Definition at line 934 of file BCIntegrate.h.
double BCIntegrate::fMarkovChainValue [private] |
A double containing the log likelihood value at the point fXmetro1
Definition at line 1061 of file BCIntegrate.h.
double* BCIntegrate::fMax [private] |
Array containing the upper boundaries of the variables to integrate over.
Definition at line 973 of file BCIntegrate.h.
int BCIntegrate::fMCMCIteration [protected] |
Iteration of the MCMC
Definition at line 938 of file BCIntegrate.h.
double* BCIntegrate::fMin [private] |
Array containing the lower boundaries of the variables to integrate over.
Definition at line 969 of file BCIntegrate.h.
TMinuit* BCIntegrate::fMinuit [protected] |
Minuit
Definition at line 919 of file BCIntegrate.h.
double BCIntegrate::fMinuitArglist[2] [protected] |
Definition at line 921 of file BCIntegrate.h.
int BCIntegrate::fMinuitErrorFlag [protected] |
Definition at line 922 of file BCIntegrate.h.
int BCIntegrate::fNacceptedMCMC [private] |
Definition at line 1049 of file BCIntegrate.h.
int BCIntegrate::fNbins [protected] |
Number of bins per dimension for the marginalized distributions
Definition at line 848 of file BCIntegrate.h.
int BCIntegrate::fNIterations [private] |
Number of iterations in the most recent Monte Carlo integation
Definition at line 1010 of file BCIntegrate.h.
int BCIntegrate::fNIterationsMax [private] |
Maximum number of iterations
Definition at line 1006 of file BCIntegrate.h.
int BCIntegrate::fNiterPerDimension [private] |
Number of iteration per dimension for Monte Carlo integration.
Definition at line 981 of file BCIntegrate.h.
int BCIntegrate::fNmetro [private] |
The number of iterations in the Metropolis integration
Definition at line 1048 of file BCIntegrate.h.
int BCIntegrate::fNSamplesPer2DBin [protected] |
Number of samples per 2D bin per variable in the Metropolis marginalization.
Definition at line 853 of file BCIntegrate.h.
int BCIntegrate::fNvar [protected] |
Number of variables to integrate over.
Definition at line 835 of file BCIntegrate.h.
Current mode finding method
Definition at line 993 of file BCIntegrate.h.
Method with which the global mode was found (can differ from fOptimization method in case more than one algorithm is used).
Definition at line 998 of file BCIntegrate.h.
double BCIntegrate::fRelativePrecision [private] |
Requested relative precision of the integation
Definition at line 1013 of file BCIntegrate.h.
double BCIntegrate::fSALogProb [protected] |
Definition at line 958 of file BCIntegrate.h.
int BCIntegrate::fSANIterations [protected] |
Definition at line 956 of file BCIntegrate.h.
Current Simulated Annealing schedule
Definition at line 1002 of file BCIntegrate.h.
double BCIntegrate::fSAT0 [protected] |
Starting temperature for Simulated Annealing
Definition at line 942 of file BCIntegrate.h.
double BCIntegrate::fSATemperature [protected] |
Definition at line 957 of file BCIntegrate.h.
double BCIntegrate::fSATmin [protected] |
Minimal/Threshold temperature for Simulated Annealing
Definition at line 946 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fSAx [protected] |
Definition at line 959 of file BCIntegrate.h.
TTree* BCIntegrate::fTreeSA [protected] |
Tree for the Simulated Annealing
Definition at line 950 of file BCIntegrate.h.
int* BCIntegrate::fVarlist [private] |
List of variables containing a flag whether to integrate over them or not.
Definition at line 977 of file BCIntegrate.h.
BCParameterSet* BCIntegrate::fx [private] |
Set of parameters for the integration.
Definition at line 965 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fXmetro0 [private] |
A vector of points in parameter space used for the Metropolis algorithm
Definition at line 1053 of file BCIntegrate.h.
std::vector<double> BCIntegrate::fXmetro1 [private] |
A vector of points in parameter space used for the Metropolis algorithm
Definition at line 1057 of file BCIntegrate.h.