Functions

BCMath Namespace Reference

Some useful mathematic functions. More...

Functions

double ApproxBinomial (int n, int k, double p)
double ApproxLogFact (double x)
TH1D * ECDF (const std::vector< double > &data)
double LogApproxBinomial (int n, int k, double p)
double LogBinomFactor (int n, int k)
double LogBreitWignerNonRel (double x, double mean, double Gamma, bool norm=false)
double LogBreitWignerRel (double x, double mean, double Gamma)
double LogChi2 (double x, int n)
double LogFact (int n)
double LogGaus (double x, double mean=0, double sigma=1, bool norm=false)
double LogNoverK (int n, int k)
double LogPoisson (double x, double par)
double LogVoigtian (double x, double sigma, double gamma)
double longestRunFrequency (unsigned int longestObserved, unsigned int nTrials)
std::vector< int > longestRuns (const std::vector< bool > &bitStream)
std::vector< double > longestRunsChi2 (const std::vector< double > &yMeasured, const std::vector< double > &yExpected, const std::vector< double > &sigma)
int Max (int x, int y)
double Max (double x, double y)
int Min (int x, int y)
double Min (double x, double y)
int Nint (double x)
void RandomChi2 (std::vector< double > &randoms, int K)
double rms (int n, const double *a)
double SplitGaussian (double *x, double *par)

Detailed Description

Some useful mathematic functions.

Author:
Daniel Kollar
Kevin Kröninger
Jing Liu
Version:
1.0
Date:
08.2008 A namespace which encapsulates some mathematical functions necessary for BAT.

Function Documentation

double BCMath::ApproxBinomial ( int  n,
int  k,
double  p 
)

Calculates Binomial probability using approximations for factorial calculations if calculation for number greater than 20 required using the BCMath::ApproxLogFact function.

Definition at line 65 of file BCMath.cxx.

{
   return exp(LogApproxBinomial(n, k, p));
}

double BCMath::ApproxLogFact ( double  x  ) 

Calculates natural logarithm of the n-factorial (n!) using Srinivasa Ramanujan approximation log(n!) = n*log(n) - n + log(n*(1.+4.*n*(1.+2.*n)))/6. + log(PI)/2. if n > 20. If n <= 20 it uses BCMath::LogFact to calculate it exactly.

Definition at line 117 of file BCMath.cxx.

{
   if (x > BCMATH_NFACT_ALIMIT)
      return x * log(x) - x + log(x * (1. + 4. * x * (1. + 2. * x))) / 6. + log(M_PI) / 2.;

   else
      return LogFact((int) x);
}

TH1D * BCMath::ECDF ( const std::vector< double > &  data  ) 

Calculate the empirical cumulative distribution function for one dimensional data vector. For consistency, the ECDF of value smaller than the minimum observed (underflow bin) is zero, and for larger than maximum (overflow bin) it is one.

Parameters:
data the observations
Returns:
histogram with normalized ECDF

Definition at line 293 of file BCMath.cxx.

{
   int N = data.size();

   std::set<double> uniqueObservations;
   // sort and filter out multiple instances
   for (int i = 0; i < N; ++i)
      uniqueObservations.insert(data[i]);

   // extract lower edges for CDF histogram
   int nUnique = uniqueObservations.size();
   double lowerEdges[nUnique];

   // traverse the set
   std::set<double>::iterator iter;
   int counter = 0;
   for (iter = uniqueObservations.begin(); iter != uniqueObservations.end(); ++iter) {
      lowerEdges[counter] = *iter;
      counter++;
   }

   // create histogram where
   // lower edge of first bin = min. data
   // upper edge of last bin = max. data
   TH1D * ECDF = new TH1D("ECDF", "Empirical cumulative distribution function", nUnique - 1, lowerEdges);

   // fill the data in to find multiplicities
   for (int i = 0; i < N; ++i)
      ECDF -> Fill(data[i]);

   // just in case, empty the underflow
   ECDF -> SetBinContent(0, 0.0);

   // construct the ecdf
   for (int nBin = 1; nBin <= ECDF->GetNbinsX(); nBin++) {
      double previousBin = ECDF -> GetBinContent(nBin - 1);
      // BCLog::OutDebug(Form("n_%d = %.2f", nBin, ECDF -> GetBinContent(nBin) ));
      // BCLog::OutDebug(Form("previous_%d = %.2f", nBin, previousBin));
      double thisBin = ECDF -> GetBinContent(nBin) / double(N);
      ECDF -> SetBinContent(nBin, thisBin + previousBin);

      // the uncertainty is only correctly estimated in the model
      ECDF -> SetBinError(nBin, 0.0);
   }

   // set the endpoint to 1, so all larger values are at CDF=1
   ECDF -> SetBinContent(ECDF->GetNbinsX() + 1, 1.);

   // adjust for nice plotting
   ECDF -> SetMinimum(0.);
   ECDF -> SetMaximum(1.);

   return ECDF;
}

double BCMath::LogApproxBinomial ( int  n,
int  k,
double  p 
)

Calculates natural logarithm of the Binomial probability using approximations for factorial calculations if calculation for number greater than 20 required using the BCMath::ApproxLogFact function.

Definition at line 72 of file BCMath.cxx.

{
   // check p
   if (p == 0)
      return -1e99;

   else if (p == 1)
      return 0;

   // switch parameters if n < k
   if (n < k) {
      int a = n;
      n = k;
      k = a;
   }

   return LogBinomFactor(n, k) + (double) k * log(p) + (double) (n - k) * log(1. - p);
}

double BCMath::LogBinomFactor ( int  n,
int  k 
)

Calculates natural logarithm of the Binomial factor "n over k" using approximations for factorial calculations if calculation for number greater than 20 required using the BCMath::ApproxLogFact function. Even for large numbers the calculation is performed precisely, if n-k < 5

Definition at line 93 of file BCMath.cxx.

{
   // switch parameters if n < k
   if (n < k) {
      int a = n;
      n = k;
      k = a;
   }

   if (n == k || k == 0)
      return 0.;
   if (k == 1 || k == n - 1)
      return log((double) n);

   // if no approximation needed
   if (n < BCMATH_NFACT_ALIMIT || (n - k) < 5)
      return LogNoverK(n, k);

   // calculate final log(n over k) using approximations if necessary
   return ApproxLogFact((double)n) - ApproxLogFact((double)k) - ApproxLogFact((double)(n - k));
}

double BCMath::LogBreitWignerNonRel ( double  x,
double  mean,
double  Gamma,
bool  norm = false 
)

Calculates the logarithm of the non-relativistic Breit-Wigner distribution.

Definition at line 208 of file BCMath.cxx.

{
   double bw = log(Gamma) - log((x - mean) * (x - mean) + Gamma*Gamma / 4.);

   if (norm)
      bw -= log(2. * M_PI);

   return bw;
}

double BCMath::LogBreitWignerRel ( double  x,
double  mean,
double  Gamma 
)

Definition at line 220 of file BCMath.cxx.

{
   return -log((x*x - mean*mean) * (x*x - mean*mean) + mean*mean * Gamma*Gamma);
}

double BCMath::LogChi2 ( double  x,
int  n 
)

Calculates the logarithm of chi square function: chi2(double x; size_t n)

Definition at line 227 of file BCMath.cxx.

{
   if (x < 0) {
      BCLog::OutWarning("BCMath::LogChi2 : parameter cannot be negative!");
      return -1e99;
   }

   if (x == 0 && n == 1) {
      BCLog::OutWarning("BCMath::LogChi2 : returned value is infinity!");
      return 1e99;
   }

   double nOver2 = ((double) n) / 2.;

   return (nOver2 - 1.) * log(x) - x / 2. - nOver2 * log(2) - log(TMath::Gamma(nOver2));
}

double BCMath::LogFact ( int  n  ) 

Calculates natural logarithm of the n-factorial (n!)

Definition at line 127 of file BCMath.cxx.

{
   double ln = 0.;

   for (int i = 1; i <= n; i++)
      ln += log((double) i);

   return ln;
}

double BCMath::LogGaus ( double  x,
double  mean = 0,
double  sigma = 1,
bool  norm = false 
)

Calculate the natural logarithm of a gaussian function with mean and sigma. If norm=true (default is false) the result is multiplied by the normalization constant, i.e. divided by sqrt(2*Pi)*sigma.

Definition at line 25 of file BCMath.cxx.

{
   // if we have a delta function, return fixed value
   if (sigma == 0.)
      return 0;

   // if sigma is negative use absolute value
   if (sigma < 0.)
      sigma *= -1.;

   double arg = (x - mean) / sigma;
   double result = -.5 * arg * arg;

   // check if we should add the normalization constant
   if (!norm)
      return result;

   // subtract the log of the denominator of the normalization constant
   // and return
   return result - log(sqrt(2. * M_PI) * sigma);
}

double BCMath::LogNoverK ( int  n,
int  k 
)

Calculates natural logarithm of the Binomial factor "n over k".

Definition at line 139 of file BCMath.cxx.

{
   // switch parameters if n < k
   if (n < k) {
      int a = n;
      n = k;
      k = a;
   }

   if (n == k || k == 0)
      return 0.;
   if (k == 1 || k == n - 1)
      return log((double) n);

   int lmax = Max(k, n - k);
   int lmin = Min(k, n - k);

   double ln = 0.;

   for (int i = n; i > lmax; i--)
      ln += log((double) i);
   ln -= LogFact(lmin);

   return ln;
}

double BCMath::LogPoisson ( double  x,
double  par 
)

Calculate the natural logarithm of a poisson distribution.

Definition at line 49 of file BCMath.cxx.

{
   if (par > 899)
      return LogGaus(x, par, sqrt(par), true);

   if (x < 0)
      return 0;

   if (x == 0.)
      return -par;

   return x * log(par) - par - ApproxLogFact(x);
}

double BCMath::LogVoigtian ( double  x,
double  sigma,
double  gamma 
)

Calculates the logarithm of normalized voigtian function: voigtian(double x, double sigma, double gamma)

voigtian is a convolution of the following two functions: gaussian(x) = 1/(sqrt(2*pi)*sigma) * exp(x*x/(2*sigma*sigma) and lorentz(x) = (1/pi)*(gamma/2) / (x*x + (gamma/2)*(gamma/2))

it is singly peaked at x=0. The width of the peak is decided by sigma and gamma, so they should be positive.

Definition at line 245 of file BCMath.cxx.

{
   if (sigma <= 0 || gamma <= 0) {
      BCLog::OutWarning("BCMath::LogVoigtian : widths are negative or zero!");
      return -1e99;
   }

   return log(TMath::Voigt(x, sigma, gamma));
}

double BCMath::longestRunFrequency ( unsigned int  longestObserved,
unsigned int  nTrials 
)

Find the sampling probability that, given n independent Bernoulli trials with success rate = failure rate = 1/2, the longest run of consecutive successes is greater than the longest observed run. Key idea from Burr, E.J. & Cane, G. Longest Run of Consecutive Observations Having a Specified Attribute. Biometrika 48, 461-465 (1961).

Parameters:
longestObserved actual longest run
nTrials number of independent trials
Returns:
frequency
std::vector< int > BCMath::longestRuns ( const std::vector< bool > &  bitStream  ) 

Find the longest runs of zeros and ones in the bit stream

Parameters:
bitStream input sequence of boolean values
Returns:
runs first entry the longest zeros run, second entry the longest ones run

Definition at line 350 of file BCMath.cxx.

{
   // initialize counter variables
   unsigned int maxRunAbove, maxRunBelow, currRun;
   maxRunAbove = 0;
   maxRunBelow = 0;
   currRun = 1;
   // set both entries to zero
   std::vector<int> runs(2, 0);

   if (bitStream.empty())
      return runs;

   // flag about kind of the currently considered run
   bool aboveRun = bitStream.at(0);

   // start at second variable
   std::vector<bool>::const_iterator iter = bitStream.begin();
   ++iter;
   while (iter != bitStream.end()) {

      // increase counter if run continues
      if (*(iter - 1) == *iter)
         currRun++;
      else {
         // compare terminated run to maximum
         if (aboveRun)
            maxRunAbove = TMath::Max(maxRunAbove, currRun);
         else
            maxRunBelow = TMath::Max(maxRunBelow, currRun);
         // set flag to run of opposite kind
         aboveRun = !aboveRun;
         // restart at length one
         currRun = 1;
      }
      // move to next bit
      ++iter;
   }

   // check last run
   if (aboveRun)
      maxRunAbove = TMath::Max(maxRunAbove, currRun);
   else
      maxRunBelow = TMath::Max(maxRunBelow, currRun);

   // save the longest runs
   runs.at(0) = maxRunBelow;
   runs.at(1) = maxRunAbove;

   return runs;
}

std::vector< double > BCMath::longestRunsChi2 ( const std::vector< double > &  yMeasured,
const std::vector< double > &  yExpected,
const std::vector< double > &  sigma 
)

Find the longest success/failure run in set of norm. distributed variables. Success = observation >= expectation. Runs are weighted by the total chi^2 of all elements in the run

Parameters:
yMeasured the observations
yExpected the expected values
sigma the theoretical uncertainties on the expectations
Returns:
runs first entry the max. weight failure run, second entry the max. success run

Definition at line 403 of file BCMath.cxx.

{
   //initialize counter variables
   double maxRunAbove, maxRunBelow, currRun;
   maxRunAbove = 0;
   maxRunBelow = 0;
   currRun = 0;
   //set both entries to zero
   std::vector<double> runs(2, 0);

   //check input size
   if (yMeasured.size() != yExpected.size() || yMeasured.size() != sigma.size()
         || yExpected.size() != sigma.size()) {
      //should throw exception
      return runs;
   }

   //exclude zero uncertainty
   //...

    int N = yMeasured.size();
    if ( N<=0)
       return runs;
   //BCLog::OutDebug(Form("N = %d", N));


   //flag about kind of the currently considered run
   double residue = (yMeasured.at(0) - yExpected.at(0)) / sigma.at(0);
   bool aboveRun = residue >= 0 ? true : false;
   currRun = residue * residue;

   //start at second variable
   for (int i = 1; i < N; i++) {
      residue = (yMeasured.at(i) - yExpected.at(i)) / sigma.at(i);
      //run continues
      if ((residue >= 0) == aboveRun) {
         currRun += residue * residue;
      } else {
         //compare terminated run to maximum
         if (aboveRun)
            maxRunAbove = TMath::Max(maxRunAbove, currRun);
         else
            maxRunBelow = TMath::Max(maxRunBelow, currRun);
         //set flag to run of opposite kind
         aboveRun = !aboveRun;
         //restart at current residual
         currRun = residue * residue;
      }
      //BCLog::OutDebug(Form("maxRunBelow = %g", maxRunBelow));
      //BCLog::OutDebug(Form("maxRunAbove = %g", maxRunAbove));
      //BCLog::OutDebug(Form("currRun = %g", currRun));

   }

   //BCLog::OutDebug(Form("maxRunBelow = %g", maxRunBelow));
   //BCLog::OutDebug(Form("maxRunAbove = %g", maxRunAbove));
   //BCLog::OutDebug(Form("currRun = %g", currRun));

   //check last run
   if (aboveRun)
      maxRunAbove = TMath::Max(maxRunAbove, currRun);
   else
      maxRunBelow = TMath::Max(maxRunBelow, currRun);

   //BCLog::OutDebug(Form("maxRunBelow = %g", maxRunBelow));
   //BCLog::OutDebug(Form("maxRunAbove = %g", maxRunAbove));

   //save the longest runs
   runs.at(0) = maxRunBelow;
   runs.at(1) = maxRunAbove;

   return runs;
}

int BCMath::Max ( int  x,
int  y 
) [inline]

Returns the "greater or equal" of two numbers

Definition at line 95 of file BCMath.h.

      { return x >= y ? x : y; }

double BCMath::Max ( double  x,
double  y 
) [inline]

Definition at line 98 of file BCMath.h.

      { return x >= y ? x : y; }

int BCMath::Min ( int  x,
int  y 
) [inline]

Returns the "less or equal" of two numbers

Definition at line 104 of file BCMath.h.

      { return x <= y ? x : y; }

double BCMath::Min ( double  x,
double  y 
) [inline]

Definition at line 107 of file BCMath.h.

   { return x <= y ? x : y; }

int BCMath::Nint ( double  x  ) 

Returns the nearest integer of a double number.

Definition at line 167 of file BCMath.cxx.

{
   // round to integer
   int i;

   if (x >= 0) {
      i = (int) (x + .5);
      if (x + .5 == (double) i && i&1)
         i--;
   }
   else {
      i = int(x - 0.5);
      if (x - 0.5 == double(i) && i&1)
         i++;
   }

   return i;
}

void BCMath::RandomChi2 ( std::vector< double > &  randoms,
int  K 
)

Get N random numbers distributed according to chi square function with K degrees of freedom

Definition at line 278 of file BCMath.cxx.

{
   // fixed upper cutoff to 1000, might be too small
   TF1 *f = new TF1("chi2", chi2, 0.0, 1000, 1);
   f->SetParameter(0, K);
   f->SetNpx(500);
   // uses inverse-transform method
   // fortunately CDF only built once
   for (unsigned int i = 0; i < randoms.size(); i++)
      randoms.at(i) = f->GetRandom();

   delete f;
}

double BCMath::rms ( int  n,
const double *  a 
)

Returns the rms of an array.

Definition at line 188 of file BCMath.cxx.

{
   if (n <= 0 || !a)
      return 0;

   double sum = 0., sum2 = 0.;

   for (int i = 0; i < n; i++) {
      sum += a[i];
      sum2 += a[i] * a[i];
   }

   double n1 = 1. / (double) n;
   double mean = sum * n1;

   return sqrt(fabs(sum2 * n1 - mean * mean));
}

double BCMath::SplitGaussian ( double *  x,
double *  par 
)

Definition at line 256 of file BCMath.cxx.

{
   double mean = par[0]; 
   double sigmadown = par[1]; 
   double sigmaup = par[2];

   double sigma = sigmadown;

   if (x[0] > mean)
      sigma = sigmaup; 
   
   return 1.0/sqrt(2.0*TMath::Pi())/sigma * exp(- (x[0]-mean)*(x[0]-mean)/2./sigma/sigma);
}