This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.4.2
Back to | overview for 0.4.2 | all versions |
Test "1d_poisson_6"
Results | |
---|---|
Status | good |
CPU time | 67.84 s |
Real time | 67.86 s |
Plots | 1d_poisson_6.ps |
Log | 1d_poisson_6.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 1000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Flawed) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.1292 | 0.01286 | - | -10.05 | 0.3 | 0.5 | 0.7 |
chi2 | good | 98 | 102.3 | 14 | 4.396 | -0.3077 | 42 | 70 | 98 |
KS | good | 1 | 0.9998 | 0.95 | -0.02486 | 0.0002617 | 0.95 | 0.99 | 0.9999 |
mean | good | 7 | 7 | 0.000834 | -0.001307 | 0.1097 | 0.002502 | 0.00417 | 0.005838 |
mode | good | 6 | 6.001 | 0.165 | 0.02083 | -0.007576 | 0.4949 | 0.8249 | 1.155 |
variance | good | 6.997 | 7.137 | 1.183 | 1.997 | -0.1182 | 3.548 | 5.914 | 8.279 |
quantile10 | good | 3.893 | 3.893 | 0.165 | -0.009942 | 0.002346 | 0.4949 | 0.8249 | 1.155 |
quantile20 | good | 4.732 | 4.732 | 0.165 | -0.001974 | 0.0005663 | 0.4949 | 0.8249 | 1.155 |
quantile30 | good | 5.41 | 5.411 | 0.165 | 0.00598 | -0.001961 | 0.4949 | 0.8249 | 1.155 |
quantile40 | good | 6.039 | 6.039 | 0.165 | -0.0006195 | 0.0002268 | 0.4949 | 0.8249 | 1.155 |
quantile50 | good | 6.67 | 6.671 | 0.165 | 0.006405 | -0.00259 | 0.4949 | 0.8249 | 1.155 |
quantile60 | good | 7.343 | 7.343 | 0.165 | 0.009347 | -0.00416 | 0.4949 | 0.8249 | 1.155 |
quantile70 | good | 8.112 | 8.111 | 0.165 | -0.0048 | 0.00236 | 0.4949 | 0.8249 | 1.155 |
quantile80 | good | 9.076 | 9.075 | 0.165 | -0.006056 | 0.003332 | 0.4949 | 0.8249 | 1.155 |
quantile90 | good | 10.53 | 10.53 | 0.165 | -0.005693 | 0.003635 | 0.4949 | 0.8249 | 1.155 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |