This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.4.2
Back to | all versions |
Overview
Number of tests | 91 |
Number of successful tests | 88 |
Number of acceptable tests | 3 |
Number of bad tests | 0 |
Number of fatal tests | 0 |
Number of tests unkown status | 0 |
Function1D
Test | Status | Subtests | Good | Flawed | Bad | Fatal | Unknown |
---|---|---|---|---|---|---|---|
1d_slope | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_squared | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_gaus | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_0 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_1 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_2 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_3 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_10 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_11 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_12 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_13 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_14 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_15 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_16 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_17 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_18 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_19 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_poisson_20 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_0 | acceptable | 14 | 13 | 1 | 0 | 0 | 0 |
1d_binomial_0_1 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_1 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_2 | acceptable | 14 | 13 | 1 | 0 | 0 | 0 |
1d_binomial_1_2 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_2 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_3 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_3 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_3 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_3 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_4 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_5_5 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_5_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_6_6 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_5_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_6_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_7_7 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_5_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_6_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_7_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_8_8 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_0_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_1_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_2_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_3_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_4_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_5_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_6_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_7_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_8_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_binomial_9_9 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_exponential | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_cauchy | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_lognormal | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_sin2 | good | 14 | 14 | 0 | 0 | 0 | 0 |
1d_2gaus | good | 13 | 13 | 0 | 0 | 0 | 0 |
Function2D
Test | Status | Subtests | Good | Flawed | Bad | Fatal | Unknown |
---|---|---|---|---|---|---|---|
2d_flat | good | 1 | 1 | 0 | 0 | 0 | 0 |
2d_gaus | good | 1 | 1 | 0 | 0 | 0 | 0 |
2d_2gaus | acceptable | 1 | 0 | 1 | 0 | 0 | 0 |
Varying parameters
Test | Status | Subtests | Good | Flawed | Bad | Fatal | Unknown |
---|---|---|---|---|---|---|---|
1d_gaus_lag | good | 0 | 0 | 0 | 0 | 0 | 0 |
2d_gaus_lag | good | 0 | 0 | 0 | 0 | 0 | 0 |
1d_gaus_iter | good | 0 | 0 | 0 | 0 | 0 | 0 |
2d_gaus_iter | good | 0 | 0 | 0 | 0 | 0 | 0 |