This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.4.2
Back to | overview for 0.4.2 | all versions |
Test "1d_exponential"
Results | |
---|---|
Status | good |
CPU time | 72.97 s |
Real time | 73 s |
Plots | 1d_exponential.ps |
Log | 1d_exponential.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 3000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Flawed) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.2707 | 0.02686 | - | -10.08 | 0.3 | 0.5 | 0.7 |
chi2 | good | 61 | 62.67 | 11.05 | 2.73 | -0.1507 | 33.14 | 55.23 | 77.32 |
KS | good | 1 | 0.9902 | 0.95 | -0.984 | 0.01036 | 0.95 | 0.99 | 0.9999 |
mean | good | 5 | 5 | 0.001591 | -0.003807 | 0.1197 | 0.004772 | 0.007953 | 0.01113 |
mode | good | 0 | 0.5 | 0.3333 | - | -1.5 | 1 | 1.667 | 2.333 |
variance | good | 25 | 25.52 | 7.08 | 2.077 | -0.07335 | 21.24 | 35.4 | 49.56 |
quantile10 | good | 0.5517 | 0.5516 | 0.3333 | -0.0174 | 0.000288 | 1 | 1.667 | 2.333 |
quantile20 | good | 1.126 | 1.126 | 0.3333 | -0.01337 | 0.0004518 | 1 | 1.667 | 2.333 |
quantile30 | good | 1.8 | 1.8 | 0.3333 | 0.01006 | -0.0005431 | 1 | 1.667 | 2.333 |
quantile40 | good | 2.579 | 2.58 | 0.3333 | 0.03508 | -0.002714 | 1 | 1.667 | 2.333 |
quantile50 | good | 3.491 | 3.492 | 0.3333 | 0.0299 | -0.003131 | 1 | 1.667 | 2.333 |
quantile60 | good | 4.606 | 4.605 | 0.3333 | -0.01409 | 0.001946 | 1 | 1.667 | 2.333 |
quantile70 | good | 6.022 | 6.019 | 0.3333 | -0.05231 | 0.00945 | 1 | 1.667 | 2.333 |
quantile80 | good | 8.052 | 8.051 | 0.3333 | -0.01396 | 0.003373 | 1 | 1.667 | 2.333 |
quantile90 | good | 11.54 | 11.54 | 0.3333 | -0.01041 | 0.003603 | 1 | 1.667 | 2.333 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |