
Introduction to Bayesian Learning & 
Markov Chains 

•  Learning process 
• Mathematical Formulation 

– Bayesian Learning rules 
– Discovery or not ? 
– Probability intervals & bounds 

• Realization via Markov Chains 
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How we Learn 
We learn by comparing real data with probability distributions for 
predicted results assuming a theory, parameters, and a modeling 
of the experimental process.  In this case, the probabilities can be 
frequencies, since we are talking about the output of a model. 

What we typically want to know: 
•  Is the theory reasonable ?  I.e., is the observed data a 
reasonably likely result from this theory (+ experiment) 

•  If we have more than one potential explanation, then we want to 
be able to quantify which theory is more likely to be correct given 
the observations 

•  Assuming we have a reasonable theory, we want to estimate the 
most probable values of the parameters, and their uncertainties.  



Formulation 
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Model provides ‘Direct Probabilities’; i.e., relative frequencies of 
possible outcomes if perform the experiment many times.  
Possible because the model is a mathematical construction.  The 
function                          with 

is the prediction from the model for the probability (density) for the 
result, with 

  

€ 

 x  a possible realization of the data
 
λ the model parameters
M model including assumptions

f(!x|!λ, M)

f(!x|!λ, M) ≥ 0
∫

f(!x|!λ, M)d!x = 1



Formulation 
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The modeling of the experiment will typically add other parameters 
(e.g., factor representing how much energy measurement can be 
varied).   

There could be additional information which is not built into the 
model, but which could limit the values of the parameters.  E.g., 
one parameter could be the mass of a new particle.  We then 
have m≥0. 

The normalization of                        is usually not needed. f(!x|!λ, M)



Formulation 
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What we want to know is the probability of our model or particular 
set of parameters.  For the model, we have 

For the parameters: 

In the Bayesian approach, these quantities are treated in the 
same way as the frequency distributions from the model, but they 
are more accurately described as ‘Degrees-of-Belief’ 

0 ≤ P (M) ≤ 1

P (!λ|M) ≥ 0∫
P (!λ|M)d!λ = 1



Formulation 
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There is no way to talk about the probability of a model being right 
as a frequency – there is only a ‘Degree-of-Belief’.  The role of 
experimental science is to modify our beliefs.  If we have complete 
faith in model M being correct, then 

The process of learning from experiment is: 

where the index represents a ‘state-of-knowledge’ 



Formulation 
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We have to satisfy our normalization condition, so 

We usually write  

and call P0 the ‘prior’.  It contains all information on the model and 
parameter values which we want to use before adding the new 
data.  Setting the denominator to  

Bayes Equation 

Pi+1(!λ, M | !D) =
P (!x = !D|!λ, M)Pi(!λ, M)

∑
M

∫
P (!x = !D|!λ, M)Pi(!λ, M)d!λ



Parameter Estimation 
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P ( !D|!λ, M)

P0(!λ|M)

P (!λ| !D,M) =
P ( !D|!λ, M)P0(!λ|M)

∫
P ( !D|!λ, M)P0(!λ|M)d!λ

P (!λ, M) = P (!λ|M)P (M)Keep the model fixed 

Prior.  If constant, max likelihood fit 

The likelihood, if Gaussians, then        fit       χ2

Formulation includes max likelihood and chi-squared as 
approximations 



Parameter Estimation 
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The posterior pdf gives the full probability distribution for all 
parameters, including all correlations – no approximations.  If 
interested in subset of parameters, then marginalize.  E.g., for one 
parameter: 

P (λi| "D,M) =
∫

P ("λ| "D,M)d"λ !=i

Quantities of interest which can be determined: 

Mean of λi < λi >=
∫

P (λi| "D,M)λidλi

Mode
λimax {P (λi|D,M)}

Median
∫ λmed

λmin
P (λi| "D,M)dλi = 0.5

Central Interval α =
∫ λlower

λmin
P (λi| #D,M)dλi =

∫ λmax

λupper
P (λi| #D,M)dλi

rms rmsi =

√[∫
P (λi| "D,M)λ2

i dλi −
(∫

P (λi| "D,M)λidλi

)2
]



Model Testing 
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We can ask – how likely are the results assuming the model. 

First, a couple definitions: 

where       is the set of parameters values for the mode of the full 
posterior pdf.  The quantity we propose for model testing is: 

!λ∗

f∗(!x) = P (!x|!λ∗, M)

fD = P ( !D|!λ∗, M)

p =

∫
f∗(!x)<fD f∗(!x)d!x

∫
f∗(!x)d!x

In words: ‘tail-area’ probability to have found a result with smaller 
probability than that observed (as with chi-squared prob test).  If 
model is correct, then p has flat distribution between 0,1 



Model testing 
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A model which represents the data should have a p-value not too 
small. 

When comparing models, just compare p-values.  The bigger the 
better. 

If several models have similar p-values, choose the simplest 
model (Occam’s razor). 

Discovery can be defined if background (standard physics) has 
small p-value, whereas new physics gives good p-value. 



Setting Limits 
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Setting limits is conceptually easy – just integrate the posterior 
pdf.  E.g.,   

0.9 =
∫ λupper

λmin

P (λi| "D,M)dλi



Markov Chains 
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Basic Property of a Markov Process: 

  

€ 

Pr{a < Xt ≤ b | Xt1 = x1,,Xtn = xn} = Pr{a < Xt ≤ b | Xtn = xn}
t1 < t2 < < tn < t

I.e., the probability distribution for the variable X depends only the 
current state, not on any previous behavior.  For a finite or 
denumerable state space (which is always the case on a 
computer),  have a Markov Chain.  E.g., Poisson process is a 
continuous time Markov Chain. 



Markov Chain Monte Carlo 

€ 

π i( )i=0
∞Goal of MCMC is to find a chain with           =pdf of interest.  

Sampling according to the Markov Chain will then correspond to 
sampling from the desired pdf. 

Markov Chain Xt-1 Xt Xt+1 

Random number Ut-1 Ut Ut+1 Ut iid from uniform 
dist between (0,1) 

Xt~π(x) 

Define Markov Chain Monte Carlo as any method producing an 
ergodic Markov chain Xt whose stationary distribution in the 
distribution of interest. 
The original algorithm is due to Metropolis. Later generalized by 
Hastings. 
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Markov Chain Monte Carlo 

Basic Limit Theorem (for aperiodic, irreducible and recurrent 
Markov Chains) 

€ 

lim
n→∞

Pii
n =

1

nfii
n

n=0

∞
∑

= π i lim
n→∞

Pji
n = Pii

n = π i

€ 

lim
n→∞

Pjj
n = π j = π iPij

i=0

∞
∑ π i = 1

i=0

∞
∑

π is the stationary distribution.  Ergodic - does not depend on the 
starting point.  Strongly ergodic class, all πi>0. 

Detailed balance: 

€ 

π iPij = π jPji Sufficient condition for πi  to be 
stationary distribution of Pij 

Note that: Eigenvalue equation 
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Markov Chain Monte Carlo 
Uses: 
1.  Simulation of physical system which follows a known 

probability rule 

2.  Calculation of expectation values in a large number of 
dimensions 

3.  Optimization with an annealing scheme 

4.  Learning (probability calculations) 

€ 

x ~ π (x)    where x is a configuration

€ 

E[g(x)] = g(x)π (x)dx∫

€ 

x* = argmaxπ (x)
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Metropolis Algorithm 

1.  Suppose we have Xt=x.  Generate a proposed new value, Y, 
according to a symmetric function g(y,x).  Symmetric means 
g(y,x)=g(x,y). 

2.  Calculate r=f(y)/f(x), where f(x) is the desired density 
distribution.  Generate a random number U from a uniform 
distribution between 0,1.  Then,  

                       set Xt+1=y if U<r;          
                    else, Xt+1=x 

Note that all steps with f(y)>f(x) are accepted.  If f(y)<f(x), take 
new position with probability r, else stay in current state. 

original Metropolis et al. paper:  
N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087. 
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Markov Chain Monte Carlo 
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For example, generate a Gaussian distribution with zero mean 
and σ=1 from a random walk Markov Chain with a step derived 
from a flat distribution as follows: 

1.  Generate a number from a flat distribution between [-s,s]; call 
it ε.  Now set y=xt+ ε 

2.  Calculate                               (note that q(y|x)=q(x|y)) 

3.  Set xt+1=y if    U<ρ, where U is a r.v. from a uniform distribution 
between (0,1) 
€ 

ρ = min e−y
2 / 2

e−x
2 / 2 ,1

 
 
 

 
 
 



Example 

5/14/08 Ring Vorlesung 20 



Markov Chain Monte Carlo 
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If you define your likelihood function and priors, then you have 
your target distribution, because 

P (!λ| !D,M) ∝ P ( !D|!λ, M)P0(!λ|M)

The MCMC, once it has converged, will output sets of parameter 
values  which are distributed according to the posterior pdf.  You 
can then use this, e.g., in your root program, to calculate anything 
you want. 

Technical realization – BAT program 


