

BAT — The Bayesian Analysis Toolkit

Allen Caldwell, <u>Daniel Kollár</u>, Kevin Kröninger

Cluster of Excellence for Fundamental Physics — Ringvorlesung

München, Garching, 14.5.2008

Motivation

Aims of data analyses

- Compare data and models
- Judge validity of models
- Estimate model parameters

BAT \rightarrow Software package to solve statistical problems using Bayesian approach $p(\mathbf{D} \mid \vec{x}) = p(\vec{D} \mid \vec{x})$

$$p(\vec{\lambda} \mid \boldsymbol{D}) = \frac{p(\boldsymbol{D} \mid \lambda) p_0(\lambda)}{\int p(\boldsymbol{D} \mid \vec{\lambda}) p_0(\vec{\lambda}) d\vec{\lambda}}$$

- Provide flexible environment to phrase arbitrary problems
- Provide set of numerical tools
- C++ based framework (flexible, modular)
- Interfaces to ROOT, Cuba, Minuit, user defined, ...

		$p(\vec{\lambda} $	$\boldsymbol{D}) = \frac{\boldsymbol{p}(\boldsymbol{D} \mid \vec{\lambda}) \boldsymbol{p}_{0}(\vec{\lambda})}{\int \boldsymbol{p}(\boldsymbol{D} \mid \vec{\lambda}) \boldsymbol{p}_{0}(\vec{\lambda}) d\vec{\lambda}}$
	Program flow:		
USER DEFINED	 create model read-in data		Define MODEL • define parameters $\vec{\lambda}$ • define likelihood $p(\mathbf{D} \vec{\lambda})$
MODEL	• normalize		• define priors $p_0(\vec{\lambda})$
INDEPENDENT (common tools)			 Read DATA from text file, ROOT tree, user defined
	 nice output 		

Common tools

- Integration
 - Monte Carlo (sampled mean)
 - Importance sampling
 - CUBA (Vegas,...)
- Optimization
 - Monte Carlo (hit & miss)
 - Metropolis
 - Interface to Minuit

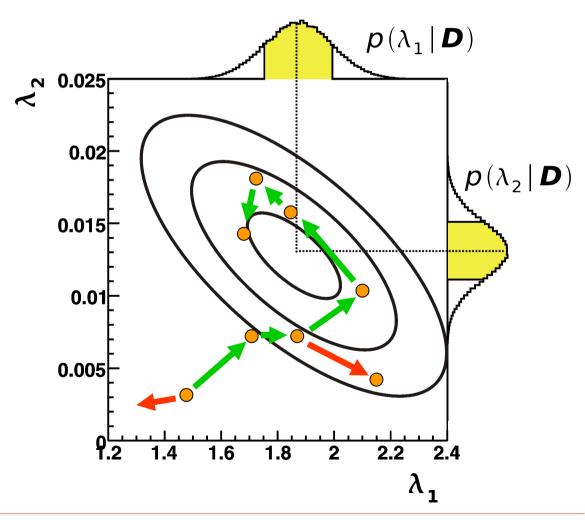
- Marginalization
 - Markov Chain Monte Carlo (MCMC)
- Validation
 - Ensemble testing and p-value
- Error propagation
 - Calculate any value of the parameters during the run

Key tool: Markov Chain Monte Carlo

- In BAT implemented Metropolis algorithm
- Map function *f(x)* by random walk towards higher probabilities
- Algorithm:
 - Start at some randomly chosen x_i
 - Randomly generate y
 - Set to x_{i+1} to y with probability $p = \min\left(\frac{f(y)}{f(x_i)}, 1\right)$
 - Otherwise $x_{i+1} = x_i$
 - Repeat
- Sampling is enhanced in regions with higher values of *f(x)*

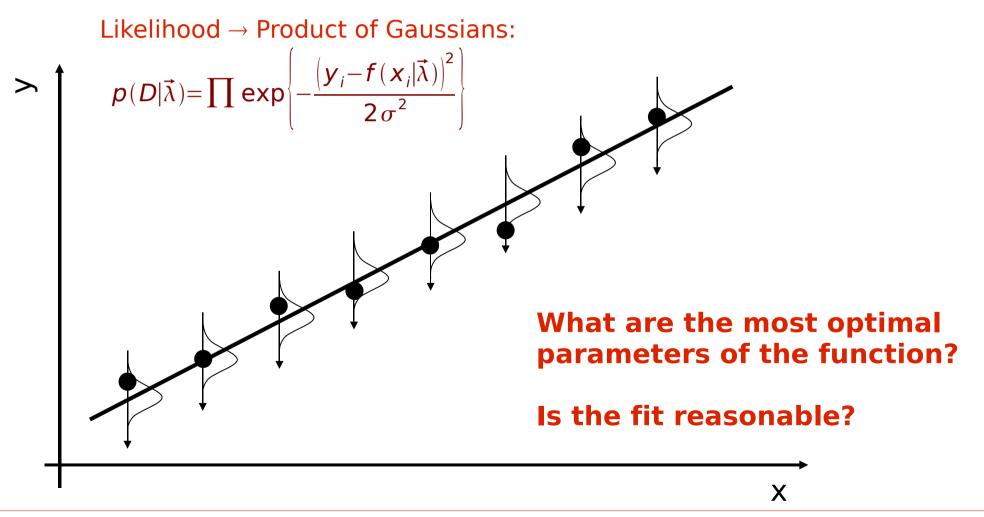
- In BAT, use MCMC to scan parameter space of $\vec{\lambda}$
- $f(\vec{\lambda}) = p(\mathbf{D} \mid \vec{\lambda}) p_0(\vec{\lambda})$
- MCMC converges towards underlying distribution
 - Determining of the overall probability distribution of the parameters $p(\vec{\lambda} | D)$
- Marginalize wrt. Individual parameters while walking \rightarrow obtain $p(\lambda_i | D)$
- Find maximum (mode)
- Error propagation

$$p(\vec{\lambda} \mid \boldsymbol{D}) = \frac{p(\boldsymbol{D} \mid \vec{\lambda}) p_0(\vec{\lambda})}{\int p(\boldsymbol{D} \mid \vec{\lambda}) p_0(\vec{\lambda}) d\vec{\lambda}}$$



The concept

 Fit points (x,y) assuming Gaussian distribution in y around the function value at each x



Peak on background

Fit data set using: **35** DATA 2nd order polynomial 30 (no peak) 25 gaussian peak + constant 20 gaussian peak + straight line 15 gaussian peak + 2nd order pol. 10년 Assume flat a priori probabilities in certain ranges of parameters, 8 10 12 i.e. $\boldsymbol{p}_{0}(\lambda) = \text{const.}$ 6 16 18 14

40

- Search for peak in range from 2. to 18. with maximum sigma of 4.
- Data were generated as gaussian peak + 2nd order polynomial (peak at x=5.)

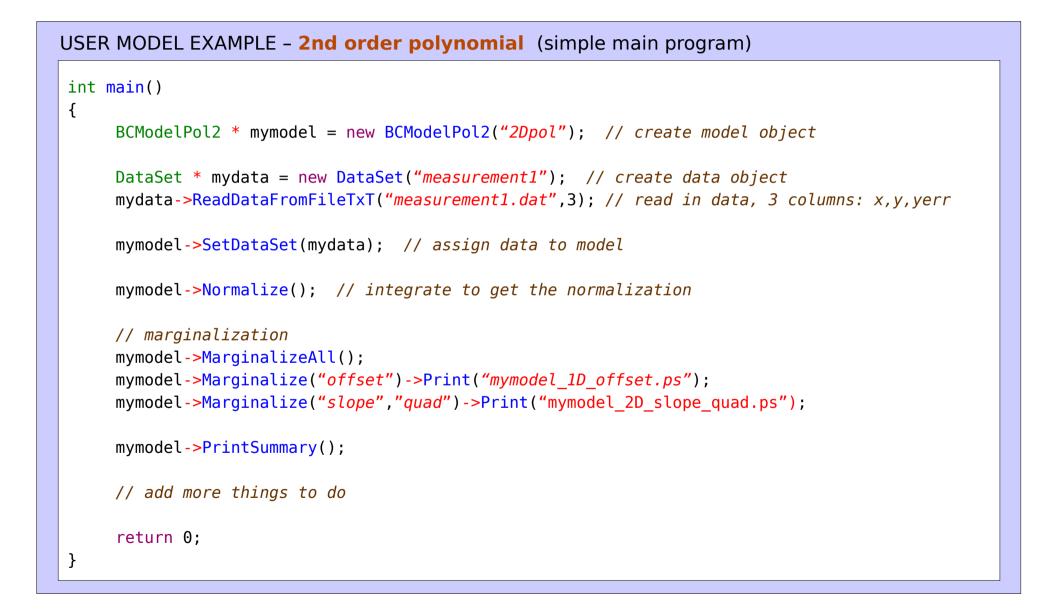
Daniel Kollár

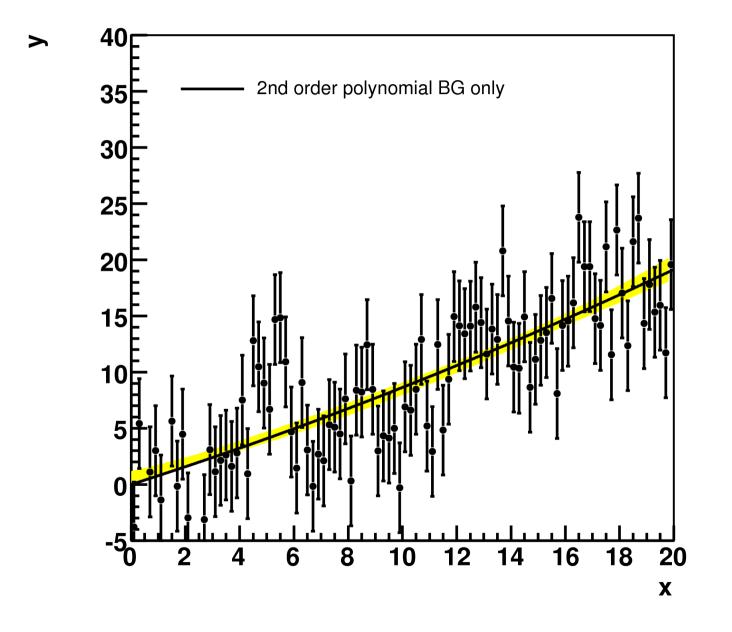
20

X

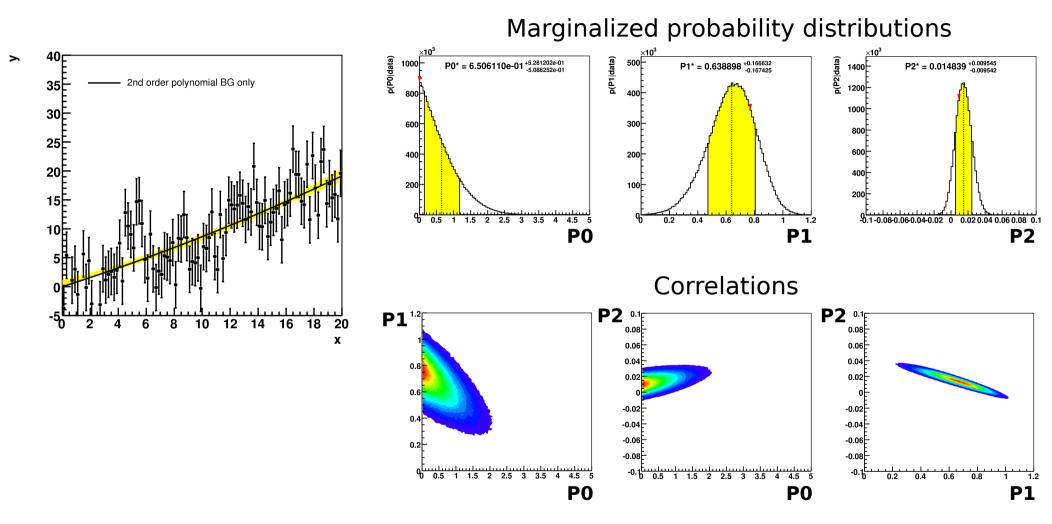
USER MODEL EXAMPLE – **2nd order polynomial** (model class)

```
double BCModelPol2::DefineParameters() { // define parameters of the model
    this->AddParameter("offset". 0.. 5.): // index 0
    this->AddParameter("slope", -0., 1.2); // index 1
    this->AddParameter("quad", -0.1., 0.1); // index 2
}
double BCModelPol2::Likelihood(vector <double> params) { // define likelihood
    double
            prob = 1.;
    double offset = params[0]:
    double slope = params[1];
    double guad = params[2];
    for(int i=0;i<this->GetNDataPoints();i++) {
         DataPoint * data = this->GetDataPoint(i);
         double
                 x = data[0]:
                v = data[1];
         double
         double verr = data[2];
         prob *= TMath::Gaus(y, offset + x*slope + x*x*guad, yerr, true);
     }
    return prob;
}
double BCModelPol2::APrioriProbability(vector <double> params) { // define prior
    return 1.; // flat prior probability for all parameters in their range
}
```

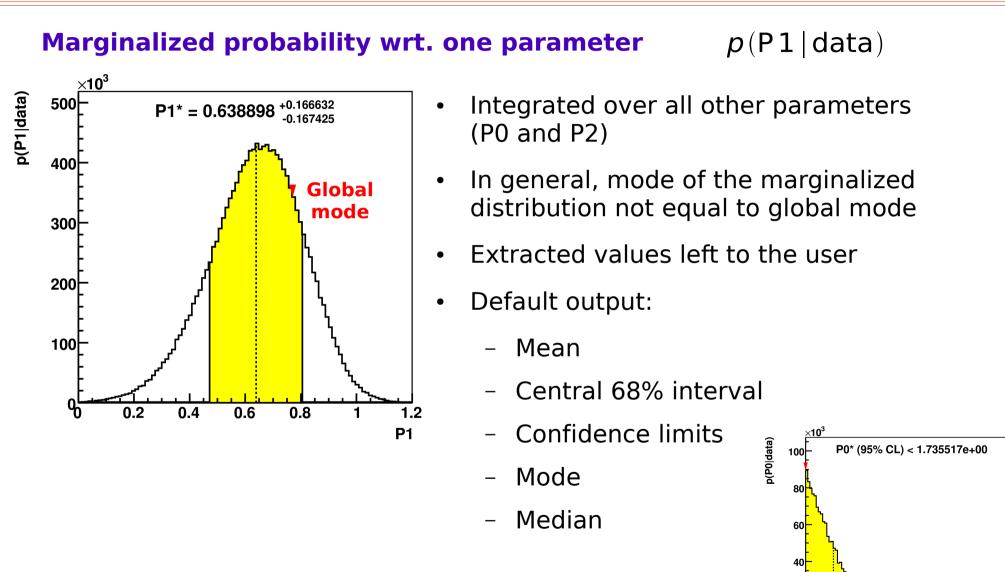





Extracted distributions



- All distributions including error band obtained during single MCMC run
- Distributions stored as 1D & 2D histograms
- Markov chain stored as ROOT tree



All information about the probability distribution is in the Markov chain

#13

4.5 5

P0

20

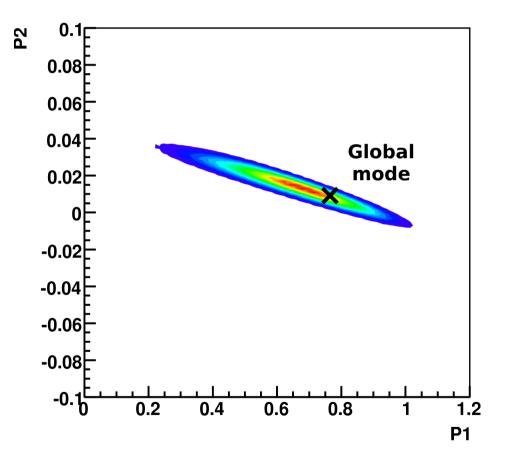
0.5

1

1.5

2 2.5 3 3.5 4

Marginalized probability wrt. two parameters — correlation



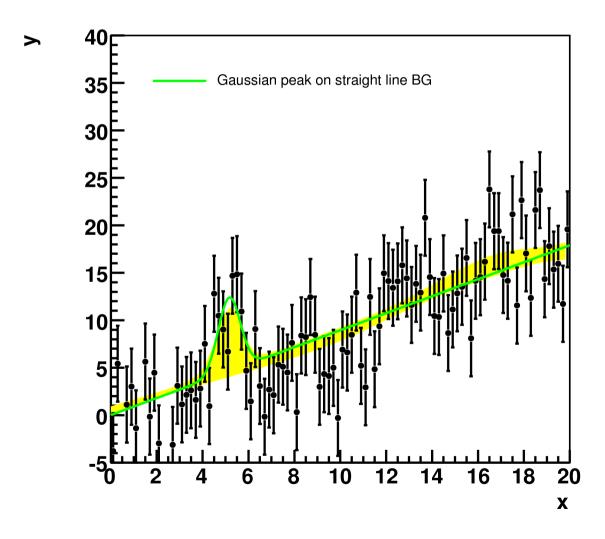
p(P1,P2 | data)

- Integrated over all other parameters (P0)
- In general, mode of the marginalized distribution not equal to global mode
- Extracted values left to the user
- Default output:
 - Mean
 - 68% contour
 - Confidence limit contours
 - Mode

All information about the probability distribution is in the Markov chain

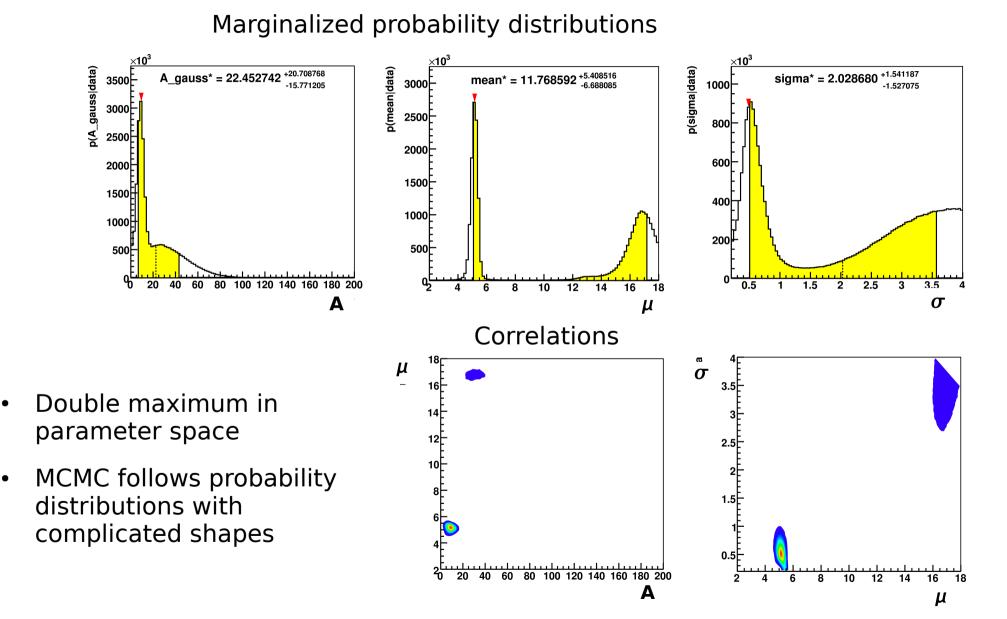
Fit for Peak + straight line 1

Total of 5 parameters — 1D marginalized distributions: 5 — 2D marginalized distributions: 10

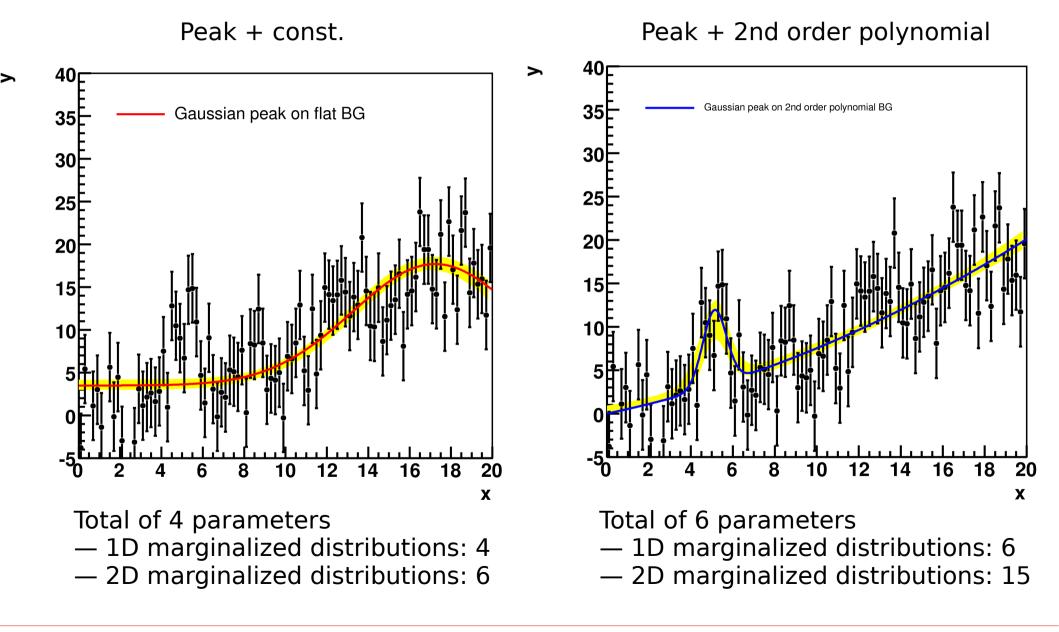


- Best fit (mode) is outside the 68% error band
- Error band has different shape

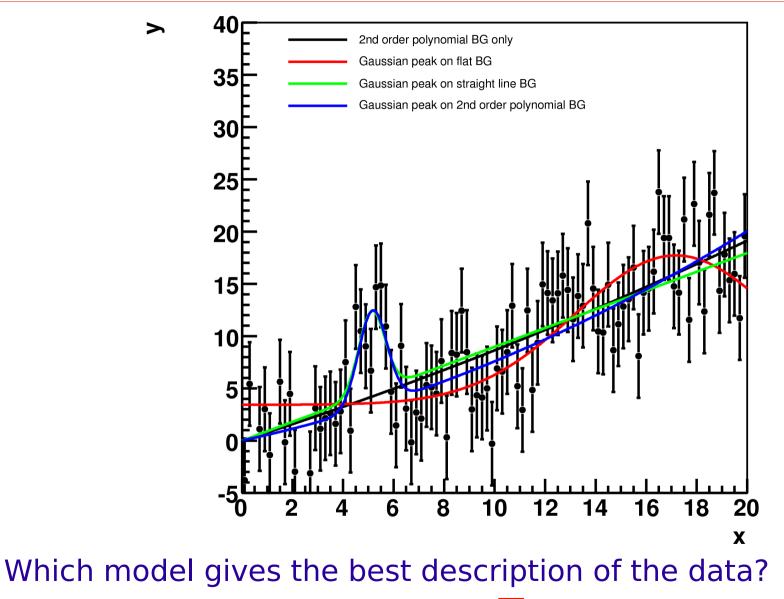
Fit for Peak + straight line 2



Remaining fits



All models



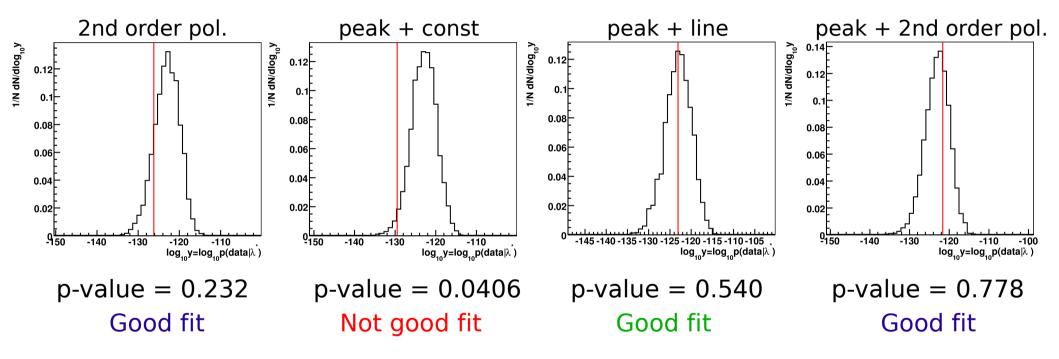
Daniel Kollár

What is the probability to observe the data given the model and the best fit parameters?

Ensemble tests:

- Generate data sets given the model and the best fit parameters
- Calculate likelihood for each data set
- Compare the likelihood distribution to the likelihood of the original data
- Calculate p-value
 - Probability to find a dataset with likelihood less that the original data
 - Value between 0 and 1
 - High p-value means good description of the data by the model

For each model generated 5000 ensembles assuming best fit values

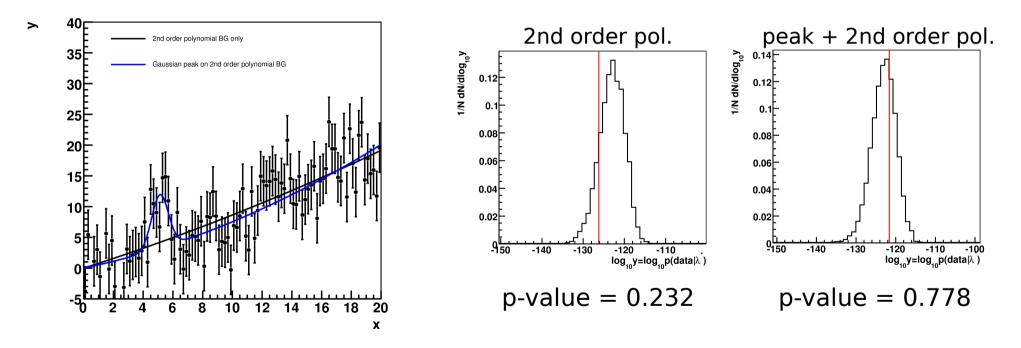


Occam's razor: Use the simplest model/theory describing your data.

- → Choose "2nd order polynomial" model
- $\, \mapsto \,$ If one knows that peak should be present, choose "peak+line" model

Now suppose that:

- the Standard Model (SM) background is quadratic
- New physics predicts signal peak in the range 2-18



- SM gives good description of the data
- It is not possible to claim an evidence or discovery of new physics
 - More precise measurement is required

Daniel Kollár

- Allows to solve simple statistical problems like function fitting as well as complex Data vs. Theory comparisons and parameter extractions
- Close to releasing 0th version to testers with good nerves
 - Hopefully sometimes this (or next) month
 - Bear with our programming skills, we're physicists 🙂
- Publication on BAT in preparation
- ROOTified version being worked on
- Students (both Diploma and PhD) to work on BAT development are very welcome

BACKUP

- Running several chains in parallel (default is 5)
- Start at random locations in allowed parameter space
- Initialize chains by doing a pre-run to achieve convergence
 - Defined using r-value
 - Ratio of the mean of the RMS values of the probability and the RMS of the mean values
 - Convergence criterion r < 0.1
- Steps in parameter space done consecutively for each parameter and chain
- Proposal function for new steps is chosen flat with varying ranges
- The efficiency for accepting new point is evaluated for each parameter and chain over last 1000 iterations
 - If efficiency > 50%, decrease the step size
 - If efficiency < 15%, increase the step size