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p ∣D =
p D ∣ p0 

∫ pD∣ p0 d 

Motivation

Aims of data analyses

● Compare data and models
● Judge validity of models
● Estimate model parameters

BAT → Software package to solve statistical problems using
Bayesian approach

● Provide flexible environment to phrase arbitrary problems

● Provide set of numerical tools

● C++ based framework (flexible, modular)

● Interfaces to ROOT, Cuba, Minuit, user defined, ...
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p ∣D =
p D ∣ p0 

∫ pD∣ p0 d 

Define MODEL
● define parameters
● define likelihood
● define priors

pD ∣

p0



Read DATA
● from text file, ROOT 

tree, user defined

● create model
● read-in data

USER DEFINED

● normalize
● find mode / fit
● test the fit
● marginalize wrt. one 

or two parameters
● compare models

● nice output

MODEL
INDEPENDENT
(common tools)

Program flow:

Building blocks / Implementation
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Common tools

● Integration

– Monte Carlo (sampled mean)

– Importance sampling

– CUBA (Vegas,...)

● Optimization

– Monte Carlo (hit & miss)

– Metropolis

– Interface to Minuit

● Marginalization

– Markov Chain Monte Carlo
(MCMC)

● Validation

– Ensemble testing and
p-value

● Error propagation

– Calculate any value of the 
parameters during the run

Key tool: Markov Chain Monte Carlo
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MCMC — Metropolis algorithm

● In BAT implemented Metropolis algorithm

● Map function f(x) by random walk towards higher probabilities

● Algorithm:

– Start at some randomly chosen xi

– Randomly generate y

– Set to xi+1 to y with probability

– Otherwise  xi+1 = xi

– Repeat

● Sampling is enhanced in regions with higher values of f(x)

p=min f y 

f x i
,1
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Scanning parameter space with MCMC

● In BAT, use MCMC to scan 
parameter space of 

●

● MCMC converges
towards underlying
distribution

– Determining of the
overall probability
distribution of the
parameters

● Marginalize wrt. Individual
parameters while walking
→ obtain  p( i|D)

● Find maximum (mode)

● Error propagation

p  ∣D =
pD ∣ p0

∫p D∣  p0  d

1


2

p 1∣D

p 2∣D

f  = p D∣ p0



p  ∣D
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Example: Function fitting

x

y

What are the most optimal
parameters of the function? 

Is the fit reasonable? 

The concept

● Fit points (x,y) assuming Gaussian distribution in y around 
the function value at each x

pD∣=∏ exp{− y i−f x i∣ 
2

2
2 }

Likelihood  Product of Gaussians:
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Peak on background

● Fit data set using:

– 2nd order polynomial
(no peak)

– gaussian peak + constant

– gaussian peak + straight line

– gaussian peak + 2nd order pol.

● Assume flat a priori probabilities
in certain ranges of parameters, 
i.e. p0() = const.

● Search for peak in range from 2. to 18. with maximum sigma of 4.

● Data were generated as gaussian peak + 2nd order polynomial
(peak at x=5.)
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USER MODEL EXAMPLE – 2nd order polynomial  (model class)

double BCModelPol2::DefineParameters() {  // define parameters of the model
this->AddParameter(“offset”,  0.,   5.);   // index 0
this->AddParameter(“slope”,  -0.,   1.2);  // index 1
this->AddParameter(“quad”,   -0.1., 0.1);  // index 2

}

double BCModelPol2::Likelihood(vector <double> params) { // define likelihood
double   prob = 1.;
double offset = params[0];
double  slope = params[1];
double   quad = params[2];
for(int i=0;i<this->GetNDataPoints();i++) {

DataPoint * data = this->GetDataPoint(i);
double    x = data[0];
double    y = data[1];
double yerr = data[2];
prob *= TMath::Gaus(y, offset + x*slope + x*x*quad, yerr, true);

}
return prob;

}

double BCModelPol2::APrioriProbability(vector <double> params) { // define prior
return 1.;  // flat prior probability for all parameters in their range

}

Example code: Model definition
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USER MODEL EXAMPLE – 2nd order polynomial  (simple main program)

int main()
{

BCModelPol2 * mymodel = new BCModelPol2(“2Dpol”);  // create model object

DataSet * mydata = new DataSet(“measurement1”);  // create data object 
mydata->ReadDataFromFileTxT(“measurement1.dat”,3); // read in data, 3 columns: x,y,yerr

mymodel->SetDataSet(mydata);  // assign data to model

mymodel->Normalize();  // integrate to get the normalization

// marginalization
mymodel->MarginalizeAll();
mymodel->Marginalize(“offset”)->Print(“mymodel_1D_offset.ps”);
mymodel->Marginalize(“slope”,”quad”)->Print(“mymodel_2D_slope_quad.ps”);

mymodel->PrintSummary();

// add more things to do

return 0;
}

Example code: Main program
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Fit for 2nd order polynomial
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Extracted distributions

P0 P1 P2

P1 P2 P2

P0 P0 P1

Marginalized probability distributions

Correlations

● All distributions including error band obtained during single MCMC run

● Distributions stored as 1D & 2D histograms

● Markov chain stored as ROOT tree
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Probability distribution for single parameter

● Integrated over all other parameters 
(P0 and P2) 

● In general, mode of the marginalized 
distribution not equal to global mode

● Extracted values left to the user

● Default output:

– Mean

– Central 68% interval

– Confidence limits

– Mode

– Median

All information about the probability
distribution is in the Markov chain

Global
mode

Marginalized probability wrt. one parameter p P1∣data
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Probability distribution for two parameters

● Integrated over all other parameters 
(P0) 

● In general, mode of the marginalized 
distribution not equal to global mode

● Extracted values left to the user

● Default output:

– Mean

– 68% contour

– Confidence limit contours

– Mode

Marginalized probability wrt. two parameters — correlation

Global
mode

p P1 ,P2∣data

All information about the probability
distribution is in the Markov chain
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Fit for Peak + straight line 1

● Best fit (mode) is outside 
the 68% error band

● Error band has different 
shape

Total of 5 parameters — 1D marginalized distributions: 5
— 2D marginalized distributions: 10
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Fit for Peak + straight line 2

     A     

 

     A   

Marginalized probability distributions

Correlations

● Double maximum in 
parameter space

● MCMC follows probability 
distributions with 
complicated shapes
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Remaining fits

Total of 4 parameters
— 1D marginalized distributions: 4
— 2D marginalized distributions: 6

Total of 6 parameters
— 1D marginalized distributions: 6
— 2D marginalized distributions: 15

Peak + const. Peak + 2nd order polynomial
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All models

Which model gives the best description of the data?

Do Goodness-of-fit test
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Goodness-of-fit

What is the probability to observe the data given the model and 
the best fit parameters?

Ensemble tests:

● Generate data sets given the model and the best fit 
parameters

● Calculate likelihood for each data set

● Compare the likelihood distribution to the likelihood of the 
original data

● Calculate p-value

– Probability to find a dataset with likelihood less that the original data

– Value between 0 and 1

– High p-value means good description of the data by the model
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p-value

2nd order pol. peak + const peak + line peak + 2nd order pol.

For each model generated 5000 ensembles assuming best fit values

p-value = 0.232 p-value = 0.0406 p-value = 0.540 p-value = 0.778
Good fit Not good fit Good fit Good fit

Occam's razor: Use the simplest model/theory describing your data.

↳ Choose “2nd order polynomial” model

↳ If one knows that peak should be present, choose “peak+line” model
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Signal of new physics on SM background

2nd order pol. peak + 2nd order pol.

Now suppose that:
● the Standard Model (SM) background is quadratic
● New physics predicts signal peak in the range 2-18

p-value = 0.232 p-value = 0.778

● SM gives good description of the data

● It is not possible to claim an evidence or discovery of new physics

– More precise measurement is required
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The BAT package

● Allows to solve simple statistical problems like function fitting 
as well as complex Data vs. Theory comparisons and 
parameter extractions

● Close to releasing 0th version to testers with good nerves

– Hopefully sometimes this (or next) month

– Bear with our programming skills, we're physicists 

● Publication on BAT in preparation

● ROOTified version being worked on

● Students (both Diploma and PhD) to work on BAT development 
are very welcome
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BACKUP



14.5.2008 Daniel Kollár #24

Some details of MCMC implementation

● Running several chains in parallel (default is 5)

● Start at random locations in allowed parameter space

● Initialize chains by doing a pre-run to achieve convergence

– Defined using r-value

● Ratio of the mean of the RMS values of the probability and the 
 RMS of the mean values

● Convergence criterion r < 0.1
● Steps in parameter space done consecutively for each parameter 

and chain

● Proposal function for new steps is chosen flat with varying ranges

● The efficiency for accepting new point is evaluated for each 
parameter and chain over last 1000 iterations

– If efficiency > 50%, decrease the step size

– If efficiency < 15%, increase the step size
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