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The common way to represent experimental data in comparison with theoretical

predictions shows some insufficiencies that may lead to faulty conclusions, which can

be relevant for the evaluation of significance of deviations from theoretical values.

Thus a team of physicists have put some effort in developing a new kind of error

bar display for distributions of numbers of events. Also, they developed a C++ code

for the Bayesian Analysis Toolkit (BAT)1, in order to make the new kind of display

easily accessible to other scientists who welcome the new presentation method.

My bachelor’s thesis deals with the calculation methods and the testing of the

BAT code and the application of the error band display style on a physics problem.

1For further information on BAT see [2] or http://www.mppmu.mpg.de/bat/.
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1. Introduction

For distributions of numbers of events, several problems have been found using the

common way to display error bars for experimental data compared to theretical

predictions. Usually these plots look e.g. like the following:

Figure 1.1.: Common way of error bar display, taken from [1]

The common data presentation style uses error bars that are centered at the observed

number of events to suggest the agreement between observation and expectation

values. Herein several problems can lead to incorrect conclusions concerning the

acceptance of the experimental data.

The error bar indicates an uncertainty of the observed value o, which is not what

is intended to be shown. The uncertainty that should be displayed is that of the
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Chapter 1. Introduction

prediction made according to a model. For the comparison of experimental data

to expectations this means: With the common error bar display, we are looking at

how probable it is that the observed number of events could have fluctuated to the

expectation. But more correctly we would need to take a look at the probability

that the expectation could have yielded the number of observed events.

The length of the error bar is usually set to ±
√
o to cover a certain amount of

probability (±1σ) for possible values of the mean. Firstly, the probability distribu-

tion can certainly be unsymmetric. Secondly, if o→ 0, often, no error bar is plottet

although 0 observed events also yield information about possible values of the mean.

It will be necessary to annihilate the insufficiencies of the common way to present

distributions of numbers of events in order to gain more correct information from

plots like these. Therefore, a new kind of data presentation has been introduced [1]

and a code has been written for implementation into BAT for cases where fluctua-

tions of predictions can be modeled with a poisson distribution. This code produces

plots according to the new requirements that look like figure 1.2.

Figure 1.2.: Proposal for new data presentation style, taken from [1]

The error bands show the 68% (green), 95% (yellow) and 99.9% (red) probability

ranges of the probability distribution for the number of observed events given the
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Chapter 1. Introduction

expectation. We can then take a look at where the experimental data points (black

dots) lie compared to the mean (horizontal line) and the probability intervals. This

will allow us a better evaluation of the discrepancy between expected and observed

numbers of events.

The code for BAT has been tested with a test code written by myself for this

thesis. The test code as well as the BAT code are written in C++, since BAT is a

C++ project. While the BAT code can be run in ROOT, the test code is a small

simple program that can be compiled and run from anywhere independently from

ROOT and BAT. It was used to compute the intervals needed for the error band

display that were then compared to the intervals generated by the BAT code.

How the error bars are calculated will be described in the following chapter on

the theoretical background of my work. Subsequently, the testing of the pre-written

code for BAT will be depicted and the test results summarized. Finally, there will

be a physics example, showing a case where this error band display could be used.
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2. Theoretical background

2.1. Central and smallest interval

The error band display requires the calculation of intervals of observed numbers of

events that include e.g. in our case p = 68.0%, 95.0% and 99.9% probability of

the probability distribution function P (o). There are different sets of numbers that

can be taken as the relevant interval: we provide the smallest and the central sets

containing the desired probability, i.e. the smallest and central intervals.

5 10 15 20
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0.2

0.3

0.4

Figure 2.1.: Gaussian pdf with central intervals marked

Figure 2.1 shows an example for a probability distribution function, for which the

smallest and central intervals could be calculated. The highlighted areas show the

68% (green), 95% (yellow) and 99.9% (red) central intervals for the simple Gaussian

distribution. The calculation methods for both kinds of intervals are described in

the following.
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Chapter 2. Theoretical background

Smallest interval

The smallest interval (for a unimodal continuous probability distribution) can be

determined by

p =

x2∫
x1

P (x)dx and P (x1) = P (x2), (2.1)

where p is the desired cumulative probability included in the interval, [x1, x2] the

smallest interval and P (x) is a probability distribution function for the observed

number of events given the expectation.

For a discrete case,
omax∑
o=omin

P (o) ≥ p, (2.2)

one has to find the correspondent interval by following a simple algorithm:

• Look for the mode (the value with the highest probability), which is the first

element of the interval:

O = {o∗} = [o∗, o∗].

• Check if the cumulative probability is at least the requested probability: P (O) ≥
p. If this is the case, then we are done here. Otherwise go on.

• Add the next element to the interval by checking which of the cumulative

probabilities of Odown = [omin − 1, omax] or of Oup = [omin, omax + 1], where

omin is the lower boundary and omax is the upper boundary of the interval

O, is greater than the other. If Pdown/up > Pup/down - and Pdown/up are the

cumulative probabilities of Odown/up - take Odown/up as the new interval O. If

the cumulative probabilities are the same, both omin−1 and omax+1 are taken

into the interval.

• Repeat the second and if necessary the third step.

Central interval

To find the central interval, the following formula serves as a definition:

1− p
2

=

x1∫
xmin

P (x)dx =

xmax∫
x2

P (x)dx (2.3)

The central interval then is [x1, x2] and it also contains the probability p.

12



Chapter 2. Theoretical background

Moving to a discrete probability distribution, we have to start at omin = 0 and

set omin = omin + 1 until
omin∑
o=0

P (o) >
1− p

2
. (2.4)

Taking omin = omin − 1, then omin is the lower boundary of our central interval.

Starting with omax = ∞, we have to do the analogous procedure going downwards

according to
∞∑

o=omax

P (o) >
1− p

2
. (2.5)

Then we set omax = omax + 1.

We can avoid the second sum going up to infinity by going upwards from omin
according to

omax∑
o=omin

P (o) ≥ p. (2.6)

omax then is the upper boundary of the interval.
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Chapter 2. Theoretical background

2.2. Probability distributions

Here, I would like to give a short introduction to the different cases and their prob-

ability distribution functions that were used for the calculation of error bands. Fur-

ther information can be found in [1].

2.2.1. Case 1 - negligible uncertainties

If the expectation values or the means of the Poisson distributions are known and

the uncertainty of these values are negligibly small, the probability distribution for

the observed number of events o given a certain mean number of events ν can be

described by

P (o|ν) =
e−ννo

o!
. (2.7)

Here, we are looking at rare events (small probabilities) and a large number of trials,

which is why we are taking a Poisson distribution function. The function above gives

us the probability that some o events were observed given the mean number of events

ν. The mode then is o∗ = bνc, which is the largest integer smaller or equal to ν.

Taking this probability distribution, we can now calculate the smallest and central

intervals for this case.

2.2.2. Case 2 - statistical uncertainties

The second case includes a statistical error on the prediction that comes from a

Monte Carlo simulation. We call the MC sample result n and the scaling factor s,

which the MC prediction has to be divided by to calculate the mean for the data.

The probability distribution function (pdf) can be computed using the Law of Total

Probability

P (o|n, s) =

∫
P (o|ν)P (ν|n, s)dν (2.8)

with P (o|ν) = e−ννo

o!
and P (ν|n, s) = 4nn!√

π(2n)!
s(sν)n−1/2e−sν [1].

The distribution P (ν|n, s) can be derived with P (λ|n) = 4nn!√
π(2n)!

λn−1/2e−λ and

P (ν|n, s) = P (λ|n)dλ/dν.

The resulting probability distribution for o, written as a recursive formula that

can be used directly in the program code, is

P (o+ 1|n, s) = P (o|n, s) · (2n+ 2o+ 2)(2n+ 2o+ 1)

4(o+ 1)(1 + s)(n+ o+ 1)
(2.9)

with P (o = 0|n, s) =
(

s
1+s

)n+1/2
.
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2.2.3. Case 3 - systematic uncertainties

The third case includes a systematic uncertainty on the prediction. The probability

distribution can be calculated using

P (o|ν0, σν) =

∫
P (o|ν)P (ν|ν0, σν)dν∫

P (ν|ν0, σν)dν
(2.10)

and thus getting

P (o|ν0, σν) =

1√
2π·σν ·o!

∞∫
0

e−ν · νo · e−
(ν−ν0)

2

2·σ2ν dν

∞∫
0

1√
2πσν

e
− (ν−ν0)2

2σ2ν dν

⇒

P (o|ν0, σν) =

∞∫
0

e−ν · νoe−
(ν−ν0)

2

2·σ2ν dν

o!
∞∫
0

e
− (ν−ν0)2

2·σ2ν

. (2.11)

P (o|ν) is of course another Poisson distribution and P (ν|ν0, σν) is a Gaussian dis-

tribution with mean ν0 and standard deviation σν .

The pdf has to be divided by
∫
P (ν|ν0, σν)dν to normalize the total probability

to 1.

The integral over ν has to be solved numerically in the code. There are different

possibilities for the numerical integration. Which ones were used in the code for

BAT and my test code are mentioned in the next chapter.

2.2.4. Case 4 - systematic and statistical uncertainties

The last case allows systematic and statistical uncertainties. We assume the system-

atic uncertainty lies on the scaling factor s and the distribution of s can be modeled

as a Gaussian, so that

P (s|s0, σs) =
1√

2πσs
e
− (s−s0)

2

2σ2s (2.12)

with mean s0 and standard deviation σs.

The pdf for o comes from

P (o|n, s, σs) =

∫
P (o|ν)

[∫
P (ν|n, s)P (s|s0, σs)ds

]
dν (2.13)
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with P (ν|n, s) = 4nn!√
π(2n)!

s(sν)n−1/2e−sν (cf. case 2) and the Poisson distribution

P (o|ν) = e−ννo

o!
.

This results in the pdf for o

P (o|n, s0, σs) =

∫
e−ννo

o!

[∫
4nn!√
π(2n)!

s(sν)n−1/2e−sν
1√

2πσs
e
− (s−s0)

2

2σ2s ds

]
dν. (2.14)

These integrations are also to be solved numerically.
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3. Testing the code

The main part of my work was to test the code for BAT, i.e. to check the error

bands computed by the code for all cases.

In order to do that, I wrote my own routine to check the central and smallest

intervals of a broad variety of different numbers in all four cases mentioned above.

The test code calculates both kinds of intervals with 68%, 95% and 99.9% cumulative

probability included.

At this point, the BAT code has not been implemented into BAT itself yet, but

it can be loaded and used in a ROOT session.

For the first two case tests, only little problems were found. For example, there

was no way to have the code calculate error bands for cases where a statistical

uncertainty exists and the prediction comes from a Monte Carlo simulation with

scaling factor s = 1. This has been included after a discussion with the code author.

The third case is missing in the BAT code, but it will be added as soon as

possible. The case with both systematic and statistical uncertainties is there, but

the numerical integration is done with a very simple approximation. The author will

change that to using a numerical integration routine from ROOT for more precision.
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Chapter 3. Testing the code

3.1. Test results

Case 1
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Figure 3.1.: Case 1 plot of P (o|ν) for ν = 10 with smallest intervals

Figure 3.1 shows a pdf for the case with negligible uncertainty. It is a simple

Poisson distribution with mean ν = 10 here. The larger ν gets the more similar to

a Gaussian distribution, i.e. the more symmetric the pdf becomes.

For the first case, the intervals calculated by the BAT code show no deviations

from the test code except for large numbers for the mean. The BAT code uses

a Gaussian distribution for values of the mean larger than 50, whereas my own

code does not include such an approximation for large numbers. Therefore small

differences are usual. As one can see in table 3.1, the differences for the lower

and upper boundary of the intervals are small enough to be explicable with the

differences caused by the usage of a Gaussian compared to a Poisson distribution

function.
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Chapter 3. Testing the code

case ν p[%]
test code BAT code

Ocentral Osmallest Ocentral Osmallest

1

0.1

68 (0,0) (0,0) (0,0) (0,0)

95 (0,1) (0,1) (0,1) (0,1)

99.9 (0,2) (0,2) (0,2) (0,2)

1

68 (0,2) (0,1) (0,2) (0,1)

95 (0,3) (0,3) (0,3) (0,3)

99.9 (0,6) (0,5) (0,6) (0,5)

10

68 (7,13) (7,13) (7,13) (7,13)

95 (4,17) (4,16) (4,17) (4,16)

99.9 (2,22) (1,21) (2,22) (1,21)

100

68 (90,110) (90,109) (90,109) (90,109)

95 (81,120) (81,120) (80,119) (80,119)

99.9 (69,134) (69,134) (67,132) (67,132)

1000

68 (969,1031) (969,1031) (969,1030) (969,1030)

95 (938,1062) (939,1062) (938,1061) (938,1061)

99.9 (898,1106) (897,1105) (896,1103) (896,1103)

Table 3.1.: Test results for case 1
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Chapter 3. Testing the code

Case 2

For cases with non-negligible statistical uncertainties on the prediction based on a

Monte Carlo simulation, the second case was designed. Figure 3.2 shows the pdf for

n = 10 and s = 1. Comparing it to the graph in figure 3.1 for the first case, one can

see the influence of the statistical uncertainty. The distribution is broader and the

difference to a Gaussian distribution is more apparent - it is less symmetric than

the function in figure 3.1. The maximum value is not as high as before, but it also

lies at o = 10.

10 20 30 40

0.02

0.04

0.06

0.08

Figure 3.2.: Case 2 plot of P (o|n, s) for n = 10 and s = 1

The second case test results can be found in table 3.2. The slight differences for

large values of the prediction - here n = 1000 and s = 10 - are again the result of

the Gaussian approximation used in the BAT code.

The influence of the statistical uncertainty is very obvious when looking at e.g.

n = 10, s = 1 and the 99.9% intervals and comparing these to the 99.9% intervals for

case 1. The intervals go up to about 30, while in the first case, the upper boundaries

go just above 20.

On the whole, one can see the agreement between test code results and BAT code

output. After having checked these cases, we can prepare to implement the code in

BAT.
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Chapter 3. Testing the code

case n s p[%]
test code BAT code

Ocentral Osmallest Ocentral Osmallest

2

10 1

68 (6,15) (6,14) (6,15) (6,14)

95 (3,21) (3,20) (3,21) (3,20)

99.9 (0,31) (0,29) (0,31) (0,29)

10 10

68 (0,2) (0,1) (0,2) (0,1)

95 (0,4) (0,3) (0,4) (0,3)

99.9 (0,6) (0,6) (0,6) (0,6)

100 10

68 (7,13) (7,13) (7,13) (7,13)

95 (4,17) (4,16) (4,17) (4,16)

99.9 (1,23) (1,22) (1,23) (1,22)

1000 10

68 (90,110) (90,110) (90,109) (90,109)

95 (80,121) (80,121) (80,119) (80,119)

99.9 (68,136) (68,136) (67,132) (67,132)

Table 3.2.: Test results for case 2
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Case 3
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Figure 3.3.: Case 3 plot of P (o|ν0, σν) for ν0 = 10 and σν = 10% · ν0 with central

intervals

Case three includes (only) a systematic uncertainty on the prediction. Figure 3.3

shows the pdf P (o|ν0, σν) for ν0 = 10 and 10% uncertainty on the prediction ν0.

The curve looks very much like the one from case one. The influence of the

systematic uncertainty seems to be limited for small numbers of ν0. Large values of

the mean have much broader probability distributions, which will be taken a look

at in the following.

This case has not been included in the BAT code yet, and thus, only the results

from the test code are presented in table 3.3. The case will be implemented into the

BAT code as soon as possible and before implementation into BAT itself.

The range of the computed intervals for ν0 = 100 and σν = 30% · ν0 might

look surprisingly large at first, but examining the probability distribution func-

tion, the intervals turn out to be correct. The pdf has been checked with Wolfram

Mathematica R© and is shown in 3.4. You can see that the probability distribution

is widely spread around 100, which is logical of course since the width of the curve

is directly proportional to σν .

Comparing the distribution to the case one distribution P (o|ν) with ν = 100 in

figure 3.5, one can see the big difference in the width of the curve. Case one has a

higher and more narrow peak. This explains why the intervals for case three have

to be much more widely ranged than for case one.
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Figure 3.4.: Case 3 plot of P (o|ν0, σν) for ν0 = 100 and σν = 30% · ν0 with central

intervals
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Figure 3.5.: Case 1 plot of P (o|ν) for ν = 100 with central intervals
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case ν0 σν [% · ν0] p[%]
test code

Ocentral Osmallest

3

0.1 10

68 (0,0) (0,0)

95 (0,1) (0,1)

99.9 (0,2) (0,2)

0.1 30

68 (0,0) (0,0)

95 (0,1) (0,1)

99.9 (0,2) (0,2)

10 10

68 (7,13) (7,13)

95 (4,17) (4,16)

99.9 (1,22) (1,22)

100 30

68 (69,131) (68,130)

95 (40,163) (39,162)

99.9 (6,208) (3,204)

Table 3.3.: Test results for case 3
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Chapter 3. Testing the code

Case 4

The fourth case with both systematic and statistical uncertainties is tested here.

A problem with this case is the computation speed. Both the test code and the

BAT code are very slow calculating the intervals for this case.

case n s0 σs[% · s0]
my code BAT code

Ocentral Osmallest Ocentral Osmallest

4

10 1 10

(6,15) (5,14) (6,15) (6,14)

(3,21) (3,20) (3,21) (3,20)

(0,30) (0,30) (0,31) (0,29)

10 10 10

(0,2) (0,1) (0,2) (0,1)

(0,4) (0,3) (0,4) (0,3)

(0,6) (0,6) (0,6) (0,6)

10 10 30

(0,2) (0,1) (0,2) (0,1)

(0,4) (0,4) (0,4) (0,4)

(0,16) (0,16) (0,16) (0,11)

100 10 30

(6,16) (5,14)

(3,27) (2,22)

(1,257) (0,139)

Table 3.4.: Test results for case 4

The intervals for case four are summarized in table 3.4. The test code results and

the BAT code results agree with each other pretty well. Small deviations can be

explained by the difference in the calculation method for the numerical integrations.

For the last case with n = 100, s0 = 10 and σs = 30% · s0, the BAT code failed to

calculate all the probabilities needed for the cumulative probability. Some adjust-

ments will have to be made to solve this problem. Also, for n = 10, s0 = 10 and

σs = 30% · s0 the 99.9% smallest interval is too small, which is probably a result

of the rounding error of the numerical integration. This problem might be solved

when the integration method is changed.

The 99.9% intervals for n = 100, s0 = 10 and σs = 30% · s0 seem surprisingly

large, but calculating them with Wolfram Mathematica R© gives the same results.

A reason why the upper boundaries for the central and smallest intervals calcu-

lated by the test code differ so much could be that the central one begins at o = 1
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Chapter 3. Testing the code

and the smallest at o = 0. This already makes a difference, since the distribution

falls to low values very fast, as can be seen in figure 3.6, and contributions from

about o = 45 on are already below the value at 0 of P (0|100, 10, 3) = 0.00031807,

which is visible in figure 3.7. The probability values continue to fall fast, so that

the contributions of increasing o decrease quickly. Therefore, the larger o gets, the

more weight P (0|100, 10, 3) has in the cumulative probability and thus the bigger

the difference it makes, whether or not this value is included. For the 99.9% interval,

this is visible in the large interval difference.

5 10 15 20 25 30

0.02

0.04

0.06

0.08

Figure 3.6.: Case 4 plot of P (o|n, s0, σs) for n = 100, s0 = 10 and σs = 30% · s0 for

a range of o = 0− 30
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Figure 3.7.: Case 4 plot of P (o|n, s0, σs) for n = 100, s0 = 10 and σs = 30% · s0 for

a range of o = 30− 60
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4. A physics example

Figure 4.1.: Signal shape for double beta

decay, taken from [3]

Experimental data might be processed

before it will be displayed in a final

histogram. In this following example,

data has been put into the template

fitter in BAT so that for each bin, a

probability distribution has been com-

puted. It is possible to take this out-

put for the calculation of the error

bands, i.e. the central and smallest

intervals. This saves some work, since

the probability distribution function

values are already given and there is no

need for calculating them once more.

Figure 4.3 shows output from the template fitter in BAT of some fake data set.

Figure 4.2.: Example for data set,

taken from [3]

The physical background of this example

is the current research on neutrinoless dou-

ble beta decay of the germanium isotope
76Ge from GERDA (GERmanium Detector

Array). The neutrinoless double beta decay

(0νββ-decay) is a rare process, which is only

possible if the neutrino particle is its own

anti-particle, i.e. if the neutrino is a Ma-

jorana fermion. Two neutrons will be con-

verted into protons via β−-decay according

to n → p + e− + νe, and the neutrinos will

annihilate themselves because of their Majo-

rana particle character, thus the whole pro-

cess can be written as 2n→ 2p+ 2e−. Since

the 0νββ-decay is a rare event, the measured

rate will be very small and the spectrum will
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Chapter 4. A physics example

be dominated by background. The shape of the signal is known very well (fig. 4.1).

The expected Q-value lies at 2039keV.

In figure 4.2, two different shapes of background and the signal are shown. Since

the shapes are known very well, examples for data sets can be generated.

Figure 4.3.: Data run through the template fitter in BAT

In our example (see fig. 4.3), the background has been assumed to be flat. On

top of the background, a Gaussian signal has been generated. The number of events

per bin fluctuate according to a Poisson distribution. A fit for the data set can be

generated with BAT.

The distribution has its maximum at 2039keV (Q-value for 0νββ-decay of 76Ge)

and sits on a background with constant number of counts. The colors hint at the

probabilities: the redder a bin entry, the higher the probability for this value. The

probability displayed here is P (νi|Ei), which is the probability to have νi expected

numbers of events in a certain bin at Ei (or ∆Ei).

To calculate the probability distribution for the observed numbers of events, we

equivalently to (2.7) take

P (o|Ei) =

∫
P (o|νi)P (νi|Ei)dνi. (4.1)

Thus, we can calculate P (o) for each bin using

P (o|Ei) =
∑
νi

e−νiνoi
o!

P (νi|Ei). (4.2)
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Chapter 4. A physics example

This is then our probability distribution function for o and we can use the same
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Figure 4.4.: Error band display using output from the BAT template fitter

algorithms from section (2.1) to calculate smallest and central intervals for the new

kind of error bar display. This has been done and the result is figure 4.4. The

original data set has been displayed in the same histogram, as one would do in a

real problem.

If the data set had been a real experimental set of observed numbers, one would

have been able to check the agreement between the model and the observations. We

can do this as an example here.

At least 68% of the measured data points should lie within the green error band,

95% in the yellow one and 99.9% in the red one. Here, the experimental data

confirms the theoretical model very well. All measured data points lie within the

three error bands and most of them lie within the green one. The fluctuations from

a curve that consists of a flat background and a Gaussian peak are statistically

explicable.
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5. Summary

The case tests verified the program codes and showed very good computation be-

haviour for cases with negligible and statistical uncertainties. For cases with numer-

ical integrations to be done, the code needs to be modified for more precision and

speed. Especially the last case with both statistical and systematic uncertainties

needs great improvement in matters of speed. For the last case, additionally, some

adjustments are needed to be done for large values of the prediction.

From our physics example we can see the usefulness of the implementation of this

error band display style in BAT. When made easily available, anyone can use the

error representation style for analyses. It is very intuitive with the three color bands

and shows clearly how much experimental data corresponds to a theoretical model

and thus creates the conditions for easy interpretation of comparisons of experiment

and theory.
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