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Abstract
We propose  an  algorithm that  automatically  finds  a  Gaussian  mixture  to  be  used  as 
proposal  density  for  importance  sampling.  The  algorithm  uses  Markov  chains  to  find 
regions  of  interest  and  the  variational-Bayes  approach  to  fit  a  Gaussian  mixture.  We 
provide an open-source implementation in the python package pypmc. This work improves 
the algorithm developed by Frederik Beaujean (2012)  in the sense that  the enhanced 
algorithm needs fewer function evaluations to produce equivalent results. In the future, the 
algorithm can be stabilized with our extension of the variational-Bayes approach in the 
context of Student's T mixture densities. We apply the Gaussian version of our algorithm to 
constrain the effective couplings in an effective theory governing  b→ s  quark transitions. 
Our analysis of the scalar, pseudoscalar, and tensor Wilson coefficients requires sampling 
and  numerical  integration  of  a  multimodal,  37  dimensional  function.  The  combined 
experimental constraints on the B →K μ

+
μ

−  angular decay distribution and the branching 
ratios of  B s→μ

+
μ

−  and  B →K *
μ

+
μ

−  can simultaneously constrain all Wilson coefficients 
mentioned above. We find that the standard model is in good agreement with the data  
acquired during the last LHC run.
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1 Introduction
The standard model (SM) of particle physics was recently celebrated for its latest success,  
the discovery of the last missing particle - the Higgs boson  [ATLAS12] [CMS12] [EB64] 
[Hig64] [GHK64].  However,  several  unsolved  questions  and  unexplained  phenomena 
remain. Neutrino masses [BM14] and dark matter  [Tri87] are only two of them. Plenty of 
SM extensions have been proposed in an attempt to solve the remaining problems. Many 
(e.g. supersymmetry [Mar11]) predict new elementary particles.
There are in principle two methods to look for new particles: Direct and indirect searches.  
In a direct search, one tries to produce one or more new elementary particles on shell as 
part of the final state of a high-energy collision. So far, only SM particles have been seen 
at colliders such as the LHC.
We only consider the indirect search via flavor physics here. In the standard model, flavor 
changing processes can only be mediated by the charged W±  bosons. Thus, SM flavor-
changing neutral  currents  (FCNCs) first  occur  at  one-loop level  in  perturbation  theory. 
Particles beyond the SM may manifest themselves as additional particles that run in the 
loop. There is a good chance to find new physics in FCNC observables since we can hope 
for  new  physics  contributions  that  enter  at  the  same  order  as  SM  contributions.  In 
particular, rare decays of B  mesons (mesons with b  quark content) are candidates to find 
new physics because SM contributions exhibit further suppression [Bea12]. In this thesis, 
we consider  B  decays, where the  b  quark turns into an  s  quark and where a lepton-
antilepton pair ℓ+ ℓ−  is emitted.
In order to account for new physics in a model-independent way, B  physics is commonly 
discussed in an effective field theory (EFT) framework (cf.  chapter  6.1). In an EFT, all 
physics at energy scales above the b -quark scale is reduced to effective couplings - the 
Wilson coefficients C i . On the one hand, the Wilson coefficients can be calculated from a 
concrete high-energy theory (like the SM) in a procedure called “matching”. On the other 
hand, the Wilson coefficients can be regarded as numerical values to be extracted from 
experimental data.
Currently, there is special interest in  B  physics since LHCb recently reported a sizable 
deviation  from  the  SM  in  one  of  the  B0

→K *0ℓ+ ℓ−  optimized  observables  [LHC13A]. 
Descotes-Genon et al. [DMV13] claim large deviations from the standard model in C 7  and 
C 9 . However, other authors [BBD14] [JC14] comment that the theory uncertainties may be 
underestimated.
In  this  thesis,  we  use  recent  measurements  of  the  muonic  (ℓ=μ)  B s→μ

+
μ

−  and 
B→K (*)

μ
+
μ

−  observables  (cf.  chapter  6)  to  fit  the  (pseudo)scalar  and  tensor  Wilson 
coefficients.  The  chosen  observables  are  particularly  sensitive  to  the  aforementioned 
Wilson coefficients. We derive more stringent constraints and compare them to the SM.

The treatment of uncertainties is achieved in a natural way by the Bayesian approach. We 
account for theory uncertainties by the introduction of so-called nuisance parameters. Our 
Bayesian analysis yields a posterior distribution that is not analytically tractable and high 
(30-40) dimensional. More elaborate theoretical treatment may lead to more parameters 
(dimensions) in the future. We consequently need sophisticated algorithms that at least 
partially  overcome the  “curse  of  dimensionality”.  Discrete  approximate  symmetries,  for 
example  C i→−Ci ,  often lead to  a multimodal  posterior.  Well  established algorithms fail 
because of high dimensionality (e.g. grid-based methods) or multimodality (e.g. Markov 
chain Monte Carlo).
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In  order  to  compare  different  models  in  a  Bayesian  framework,  we  are  required  to 
numerically integrate the posterior.  As a consequence,  we need an algorithm that  can 
compute  integrals  of  multimodal  nonnegative  functions  and  that  still  works  in  O(40)  
dimensions. Parallel algorithms are desirable since parallelization is the only way to profit 
from computing clusters and the next generations of processors. The number of calls to 
the posterior should, in our application, be kept at a minimum. A single call to the posterior 
distribution of the Wilson coefficients takes a few seconds.

The  challenges  described  above  are  typical  for  Bayesian  analyses.  Sampling  and 
numerical integration in high dimensions are still unsolved problems. There is no standard 
algorithm that tackles all of the above mentioned difficulties yet. This thesis is therefore 
focused on the development of such an algorithm.
For unimodal distributions, Hamiltonian (originally: hybrid) Monte Carlo (HMC) [DKPR87] is 
probably  the  most  efficient  known  sampling  algorithm.  It  is  based  on  the  famous 
Metropolis-Hastings algorithm [Met+53] [Has70] combined with a sophisticated proposal. 
However, HMC requires that the target is differentiable and it needs the full gradient as a  
callable function. Since our targets are multimodal and we do not have access to their  
gradients1,  we  cannot  use  HMC.  Besides,  it  only  samples  the  target  but  it  does  not 
compute  the  integral.  A promising  approach  to  compute  integrals  is  nested  sampling 
[Ski06], where the target is sampled under constraints. A very recent integration approach 
is proposed by Caldwell and Liu  [CL14]. Their trick is to compute the integral only in a 
subvolume and extrapolate to the entire parameter space. Unfortunately, none of these 
approaches is applicable for our kind of problem.
Importance sampling (cf. chapter  4.2.1) is a promising tool for our purposes. It can cope 
with multimodal distributions and is trivially parallelized. However, it only works reasonably 
in high dimensions if the proposal density is not too different from the target distribution.  
Adaptive importance sampling [Cap+08] [Kil+09] (see also chapter 4.2.2) uses previously 
obtained samples to improve an existing proposal but this again only works well if the first 
proposal is not too bad. The question how to find a good first proposal is answered by  
[Bea12] [BC13]. They suggest to first run local-random-walk Markov chains (cf. chapter 
4.1) that just need a moderate initialization. Then, they use the Markov chain samples to 
generate a proposal  for  importance sampling. However,  the user has to carefully tune 
many parameters by hand. In addition, a lot of samples are drawn but only used once for a  
single proposal update.
In chapter 5, we present several ways to improve their approach. Our goal is an algorithm 
that draws samples from an arbitrary function with as few calls to the target function as 
possible. The results should be robust even with poor parameter input by the user. To 
approach this goal, we suggest a more efficient usage of population Monte Carlo (PMC) 
than presented in  [Cap+08] and [Kil+09]. Moreover, we incorporate a method suggested 
by Cornuet et al.  [Cor+12] to combine the importance samples from multiple proposals. 
We further suggest to use the variational-Bayes (VB) method (cf. chapter  3) instead of 
PMC. We show that VB with Gaussian mixtures is robust against a poor initialization. Last 
but  not  least,  we  provide  an  extension  to  existing  variational-Bayes  approaches  with 
Student's  T mixture densities.  Because of the heavier  tail,  we hope that  replacing the 
Gaussian for Student's T distribution reduces outliers (see chapter 4.5 in  [Bea12]) and 
therefore increases the quality of the importance samples.

1 The analytical gradient is not calculated yet and the finite differences method would be far too expensive.
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The  outline  of  this  thesis  is  as  follows:  In  chapter  2,  we  review  the  most  important 
definitions and theorems of probability theory. Chapters 3.1 and 3.2 contain reviews of the 
general  variational-Bayes approach and the specific case with  Gaussian mixtures.  We 
extend existing work on the variational-Bayes method with Student's T mixtures in chapter 
3.3. Well established sampling algorithms are briefly reviewed in chapter 4. The main work 
is summarized in chapter 5. There, we present and compare different algorithms that can 
be used to automatically generate meaningful importance samples. In addition to the toy  
problems in chapter  5, we also apply the newly developed algorithm to search for new 
physics in rare B  decays in chapter 6.
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2 Probability theory
We  explain  the  most  important  concepts  of  probability  theory  in  this  chapter.  Our 
discussion  is  restricted  to  definitions  and statements  needed in  other  chapters  of  this 
thesis.  Useful  textbooks  for  further  reading  include  [Koc07],  [Jam06],  or  [JB03].  The 
modern axiomatic probability theory is based on a book by Kolmogorov published in 1933 
[Kol33].

2.1 Basics

Definition: Probability

Let  Ω  denote some set (the “sample space”) and  ℘(Ω)  its power set. The mapping2 
P:℘(Ω)→ℝ  is called probability if and only if

Axiom 1 P(Ω)=1  (normalization)
Axiom 2 ∀ A∈℘(Ω): P( A)≥0  (positivity)
Axiom 3 If {An}n∈ℕ  is a sequence of mutually exclusive sets (∀ i≠ j : A i∩ A j=∅)  then 

P(∪n∈ℕ

An)=∑
n∈ℕ

P (An)  ( σ -additivity).

~

If we set An=∅ ∀n≥N  for some finite N ∈ℕ , the finite sum rule is implied by axiom 3.
A variable that is connected to the sample space by some function y=f (x ), x∈Ω  is called 
a random variable. If  P( y )  is the sampling probability of  y , we say “ y  is distributed 
according to P “, y∼P .
We  denote  the  joint  probability  of  A  and  B  by  P( A ,B)≡P (A∩B) .  The  conditional 
probability of A  given B  is denoted as P( A∣B)  and defined by

P( A∣B)≡
P( A ,B)

P(B)
. (1)

The definition of conditional probability gives rise to two important theorems, the law of 
total probability and Bayes' theorem.

Theorem: Law of total probability

Let  {Bn}  be a finite or countable partition of  Ω ; i.e. the  Bn  are mutually exclusive and 

∪
n∈ℕ

Bn=Ω . Then for all A ,C∈℘(Ω)

P( A∣C)=∑
n

P (A∣Bn ,C) P(Bn∣C) . (2)

~
2 To  be precise,  P  is  defined  on  Z⊆P (Ω)  where  Z  is  a  σ -algebra.  We do  not  delve  into  these 

mathematical details here.
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We often consider continuous random variables and a continuous sample space Ω⊆ℝ
n . It 

can  be  shown  that  for  a  nonnegative  function  p:Ω→ℝ0
+  with  ∫Ω

p=1 ,  the  integral 

P( A)≡∫A
p (x)d x ,  where  A⊆Ω ,  defines  a  probability.  The  function  p  is  called  the 

probability density function (PDF). The law of total probability,

p(x∣z )=∫ p(x∣y , z ) p ( y∣z )d y , (3)

also holds for PDFs. It is often assumed to be clear from the context, whether a symbol 
denotes a probability or a probability density.

2.2 Bayes' theorem

Theorem: Bayes' theorem

P(θ∣D , M )=
P(D∣θ , M )P(θ∣M )

P(D∣M )
(4)

~

Bayes'  theorem is the basis of  our analysis in chapter  6.  It  describes how to invert  a 
conditional probability; i.e. it describes how to calculate  P(θ∣D , M )  when  P(D∣θ , M )  is 
known. The probability P(D∣θ , M )  is called “likelihood”. It is the sampling probability of a 
particular  data  set  D ,  given  a  model  M  and  model  parameters  θ .  The  probability 
P(θ∣M )  is  called  “prior”.  It  describes  the  knowledge  about  the  parameters  θ  before 

looking at the data. The left  hand side of  (4) is called the “posterior”.  It  describes the 
knowledge  about  the  model  parameters  θ  after  we  have  seen  the  data  D .  The 
denominator  Z≡P (D∣M )  is called “evidence”. Using the law of total probability  (3), the 
evidence

Z≡P (D∣M )=∫ dθ P(D∣θ ,M )P (θ∣M) (5)

turns out to be the integral of the numerator. As long as only one model M  is considered, 
the evidence is just an unimportant normalization constant. However, if there are multiple 
models,  the  evidence  plays  a  key  role  in  model  comparison.  Suppose  we  have  two 
different  models  that  describe  the  data  generating  process;  i.e.  the  two  likelihoods 
P(D∣θi , M i) , i=1,2 . We specify the priors P(θi∣M i) , i=1,2  and then make an experiment 

that generates data D . What we would like to know is P(M i∣D), i=1,2 , the probability of 
model i  given the data D . Bayes' theorem states

P(M i∣D)=
P(D∣M i)P(M i)

P(D)

P(M 1∣D)

P(M 2∣D)
=

P(D∣M 1)

P(D∣M 2)
⋅

P(M 1)

P(M 2)
≡

Z1

Z2

⋅
P(M 1)

P(M 2)

. (6)

Note  that  the  probability  P(M i∣D)  is  only  defined  for  the  models  M 1  and  M 2 .  It  is 
therefore NOT the absolute probability of model i . It rather is the probability of model i  
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among the other considered models. If there is just one model, P(M∣D )  is always equal 
to one. It is therefore more useful to consider the ratio

P(M i∣D)=
P(D∣M i)P(M i)

P(D)

P(M 1∣D)

P(M 2∣D)
=

P(D∣M 1)

P(D∣M 2)
⋅

P(M 1)

P(M 2)
≡

Z1

Z2

⋅
P(M 1)

P(M 2)
. (7)

The ratio Z1/ Z2  is called Bayes factor, the ratio of the priors is called the prior odds. If no 
model  is  preferred  a  priori  ( P(M 1)=P(M 2)) ,  the  Bayes  factor  Z1/ Z2  is  equal  to  the 
posterior odds  P(M 1∣D )/P( M2∣D ) . A Bayes factor larger than one means that the data 
prefer model one, a Bayes factor smaller than one means that model two is preferred.

2.3 Law of large numbers

The most important statements in probability theory are “expectation values” (also called 
“mean values”).  As  the name suggests,  the  expectation value describes the expected 
(more precisely “average”) outcome of a random experiment. By the law of large numbers, 
the expectation value is equal to the average over many events. The standard deviation 
estimates how much the samples scatter around the expectation value.

Definition: Expectation value, (co-)variance and standard deviation

Let  P  be  the  PDF  of  a  continuous  random  variable  x .  Then  the  integral 
EP[x ]≡E[ x ]≡∫ x P (x)d x  is called the expectation value of x .

The  expectation  value  var (x)≡E [(x−E [x ])
2 ] =

simple calculation
E[ x2

]−E [x ]
2  is  called  variance 

and √var (x )  is called standard deviation of x .
For  two  random  variables  x  and  y ,  cov (x , y)≡E [(x−E [x ])( y−E [ y])]  defines  the 
covariance between x  and y .

~

Two random variables x  and y  are called independent if and only if P(x∣y)=P (x)  and 
P( y∣x)=P ( y) . x  and y  are called uncorrelated if and only if cov (x , y)=0 . Independent 

random variables  are  always  uncorrelated  but  uncorrelated  random variables  are  not  
necessarily independent.
The likelihood (and therefore the posterior) is often only available as computer code. In 
that case, the only way we can deal with the posterior is a finite number of “samples”. The 
law of large numbers ensures that we can at least approximate the expectation values of  
interest with them.

Theorem: Strong law of large numbers

Let {xn}  be a sequence of independent and identically distributed (iid) samples (that is the 
xn  are independent and all distributed according to the same probability distribution). Let 

further E [|xn|]<∞  and
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SN≡
1
N

∑
n=1

N

xn .

Then lim
N →∞

SN=E[ x ]  (almost surely).

~

An elementary proof  of  the theorem is given in  [Ete81].  The requirement  E [|xn|]<∞  is 
implied by finite variance var [x ]<∞⇒ E [|x|]<∞  as a consequence of Jensen's inequality.
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3 Variational Bayes
The variational-Bayes technique is an extremely powerful method to find an approximation 
to a probability distribution given samples from it. In chapter  3.1, we derive the general 
results of variational Inference. In the subsequent chapters, we apply these to a Gaussian 
(chapter  3.2) and a Student's T (chapter  3.3) mixture model. Recently, variational-Bayes 
approaches have been used to cluster and classify given data sets [TIF12]. In this work, 
VB is used in order to find a suitable proposal density for importance sampling (cf. chapter  
4.2).

3.1 Basics

In this chapter, we derive the main general result of variational Inference. All model specific 
applications are based on the result denoted at the end of this section in  (16). A more 
detailed derivation can be found in chapter 10.1 of [Bis06] which is also the guideline for 
this chapter.
The  general  setup  is  that  we  have  observed  an  iid  data  set  that  we  denote  by 
X={x1,... , xN} .  The data  X  are part of the input and therefore fixed. Furthermore, we 

need  to  have  a  model  which  allows  us  to  formulate  the  “joint  probability  distribution” 
P(X ,Z ,θ)  in terms of the data X , a set of parameters θ , and a set of “latent variables” 
Z={z1,... , zN} .

Latent  variables  describe  unobserved  data.  Any  variable  associated  to  a  single 
observation is called latent if the model defines a probability distribution for that variable 
P(zi∣x i ,θ) . In our application, latent variables occur in the context of mixture densities

P(xn∣θ)=∑
k=1

K

πk Pk (xn∣θ) , πk∈θ , ∑
k=1

K

π k=1, πk≥0 . (8)

When samples from a mixture like (8) are drawn, the visible data are X={x1,... , xN} . We 
can now ask for each of the xn , which component k  is responsible for it. That means we 
consider the component index k  as latent variable. Because the samples come without 
the latent variables, they are also called “hidden” variables. We denote the latent variables  
with Z={z1,... , zN}  such that znk=1  if k  is the component that gave rise to xn  and znk=0  
otherwise.  By the  law of  total  probability  (2),  a  mixture density  can be rewritten  as  a 
density where the latent variables are marginalized out:

P(xn∣θ)=∑
k=1

K

P (znk=1∣θ)P (xnk∣znk=1,θ) , P(znk=1∣θ)≡πk

, P(xn∣znk=1, θ)≡Pk (xn∣θ) .
(9)

P(znk∣xn ,θ)  can be formulated using Bayes formula:

P(znk=1∣xn,θ)=
P (znk=1∣θ)P (xn∣znk=1,θ)

P(xn∣θ)
. (10)

In a general mixture model (9), the joint probability is
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P(X ,Z ,θ)=∏
n=1

N

P (xn∣znk=1,θ)P(znk=1∣θ)P(θ)

=∏
n=1

N

P(xn∣zn ,θ) P(zn∣θ)P(θ)

where the prior P(θ)  has to be defined according to the specific problem at hand.

Introducing an arbitrary probability distribution q , we can write for the log of the evidence 
of our model:

ln P(X )=L (q)+ KL(q∥P) (11)

with

L (q)=∫ q(Z ,θ) ln{P (X ,Z ,θ)

q (Z ,θ) }d Zdθ (12)

KL(q∥P)=−∫ q(Z ,θ) ln {P(Z ,θ∣X)

q (Z ,θ) }d Zdθ (13)

KL(q∥P)  is  known  as  the  “Kullback-Leibler  divergence  q  to  P “  [KL51],  where 
q=q (Z ,θ)  and P=P(Z ,θ∣X) . Though it is not symmetric, it is widely used as distance-
measure between two probability distributions. The KL divergence is nonnegative and the 
unique global minimum KL(q∥P)=0  is reached if and only if q=P . We would like to know 
the posterior distribution of the parameters and latent variables P(Z ,θ∣X ) . However, we 
assume the true posterior to be too complicated to deal with and therefore look for an 
approximation q (Z ,θ) . No matter how we constrain q (Z ,θ) , we should try to minimize its 
“distance” (i.e. KL(q∥P) ) to the posterior P(Z ,θ∣X ) . Taking a closer look at (11), we see 
that minimizing  KL(q∥P)  is equivalent to maximizing  L (q) ,  the “log-likelihood bound”. 
Because KL(q∥P)  is nonnegative, L (q)  provides a lower bound of ln P(X ) .
In  order  to  obtain  an  analytically  tractable  q ,  we  restrict  it  to  factorize  as  q (Z ,θ)=  
q (Z)q (θ) . Surprisingly this very general restriction, together with a specific kind of prior 
distribution,  automatically  determines  the  functional  form of  q .  By  functional  form we 
mean that there is a closed fixed form expression for q  in terms of a finite number of so-
called hyperparameters. With a factorizing q , the log-likelihood bound can be rewritten as:

L (q)=∫ q(Z ,θ) ln{P (X ,Z ,θ)

q (Z ,θ) }d Zdθ

=∫ q(Z)q(θ) ln {P(X ,Z ,θ)

q(Z)q(θ) }d Zd θ

= ∫ q (Z)(∫ q(θ) ln { P(X , Z ,θ)} dθ ) d Z

−∫ q(Z) ln {q (Z)} d Z−∫q (θ) ln {q(θ)} dθ

=−KL ( q(Z)∥
~
P (X ,Z))−∫ q(θ) ln {q(θ)}d θ+const

(14)

9



where we define

ln~P(X ,Z)≡∫ q(θ) ln { P(X ,Z ,θ)}dθ+const=Eq (θ)[ ln P( X , Z ,θ)]+const (15)

If  we  assume  exp (∫ q(θ) ln {P(X ,Z ,θ)}dθ )  to  be  integrable  with  respect  to  Z ,  then 
~
P (X ,Z)  defines a probability distribution for the latent variables Z  (where “const” is just 

the  log  of  its  normalization).  For  a  fixed  q (θ) ,  L (q)  is  maximized  when 
KL (q (Z)∥

~P(X , Z))  is minimized; i.e., for q (Z)=
~
P (X ,Z) . By exchanging Z  and θ  in the 

above derivation we can analogously calculate the other factor q (θ) . We summarize the 
general result:

q(θ)=
exp ( Eq(Z )[ ln P (X ,Z ,θ)] )

∫exp ( Eq( Z)[ ln P(X ,Z ,θ)])d θ
⇔ ln q(θ)=Eq( Z)[ ln P(X ,Z ,θ)]+const

q (Z)=
exp (Eq(θ)[ ln P (X ,Z ,θ)] )

∫exp ( Eq (θ)[ ln P(X ,Z ,θ)]) d Z
⇔ ln q(Z)=Eq(θ)[ ln P (X ,Z ,θ)]+const

(16)

Formula (16) describes a formalism to find an optimal (in the sense of minimal KL (q∥P ) ) 
factorizing  (q (Z ,θ)=q(Z)q(θ))  approximation to the true posterior  P(Z ,θ∣X ) .  A closer 
look at (16) discovers that calculating one of q 's factors requires the other. For a suitable 
model's joint probability  P(X ,Z ,θ) ,  (16) can nevertheless fix the functional form of  q . 
Then the two equations in  (16) reduce to hyperparameter update equations. This basic 
principle is the same as in every so-called “EM-like” (EM for Expectation Maximization) 
algorithm. The EM-algorithm was first introduced in  [DLR77]. The lower equation of  (16) 
updates  the  estimate  of  the  latent  variables  q (Z)  given  an  estimate  of  the  model 
parameters q (θ) . The step that estimates the latent variables is called the “E-step”. The 
upper equation of  (16) updates the parameter estimate  q (θ)  given the latent variable 
distribution q (Z) . The parameter update is called “M-step” in the EM algorithm. E- and M- 
step are iterated until a stopping criterion is reached. For the variational-Bayes approach, 
we  use  the  relative  change  of  the  lower  likelihood  bound  L (q) .  In  the  original  EM-
algorithm [DLR77], there is no distribution q (θ)  whose hyperparameters are updated but 
the M-step directly adapts the parameters θ . In the next two sections we apply (16) in the 
context of Gaussian and Student's T mixture models.

3.2 Gaussian mixture

In this chapter, we explain how the variational-Bayes technique can be used in the context 
of Gaussian Mixture densities. In this work, we only state ansatz and result. For a detailed 
derivation see chapter 10.2 in [Bis06].
The general prerequisites (cf. chapter 3.1) are that we have iid data X={x1, ... ,xN }  and a 
model  for  the  “joint  probability  distribution”  P(X ,Z ,θ) .  In  the  following,  we  construct 
P(X ,Z ,θ) .

In this specific application, we assume the data to originate from a Gaussian mixture:

P(xn∣θ)=∑
k=1

K

πk N (xn∣μ k ,Σk) , ∑
k=1

K

πk=1 . (17)
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Note that we aggregate all model parameters into θ={π ,μ , Σ} .
A latent  variable  model  is  obtained  by  reinterpreting  the  component  weights  πk  as 
marginalized latent variables. For that purpose, we introduce the latent variables Z={zn}n  
where zn=( zn1 , ..., znK )  is a binary vector. That means, exactly one entry of zn  is one while 
the others are zero. For a given n , the nonzero  znk  indicates the component that gave 
rise to xn . With Z , (17) can be rewritten as a latent variable model (cf. eq's (10.37) and 
(10.38) in [Bis06]):

P(Z∣π )=∏
n=1

N

∏
k=1

K

πk
z nk

P(X∣Z ,μ ,Σ)=∏
n=1

N

∏
k=1

K

N (xn∣μk ,Σk)
znk

P(X ,Z∣θ)=P(Z∣π)P (X∣Z ,μ ,Σ)

(18)

In order to write down  P(X ,Z ,θ)=P(X , Z∣θ)P (θ) ,  we are only left  to specify the prior 
distribution P(θ) :

P(θ)=P(π) P(μ ,Σ)
P(π )=Dir (π∣α0)

P(μ ,Σ)=NW −1
(μ ,Σ∣m0 ,β0 ,V0 ,ν 0)

(19)

In (19), we define the functional form P(θ)  of the prior in terms of the hyperparameters3 
Θ={α0 ,m0,β0 ,V0 , ν0} .  The  prior  is  chosen  such  that  the  variational  posterior  for  the 
parameters q (θ)  takes the same functional form but with updated hyperparameters

q (θ)=q(π )q (μ ,Σ)
q (π )=Dir (π∣α)

q (μ , Σ)=NW −1(μ ,Σ∣m ,β ,V ,ν) ,
(20)

see also [Bis06]. This property defines our prior to be the “conjugate prior”. The functional  
forms of q (Z)  and q (θ)  are not imposed but arise as a consequence of the general result 
denoted in (16). The only assumption on q (Z ,θ)  is its factorization into q (Z)q (θ) .
q (Z)  takes the form

q (Z)=∏
n=1

N

∏
k=1

K

rnk
z nk , (21)

where  rnk=r nk(m ,β ,V ,ν) ,  the responsibility  matrix,  is  calculated  from  (16).  The result 
reads

rnk=ρnk /∑
k'=1

K

ρnk' (22)

3 Parameters that describe the prior distribution are called “hyperparameters”.
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where

ln ρnk=Eq (θ)[ ln πk−
1
2

ln|Σ|−
1
2

(xn−μ k)
T

Σ
−1

(xn−μ k)] . (23)

Note that q (Z)  and P (Z )=P (Z∣π )  take the same functional form. With a fixed closed-form 
expression for q (Z ,θ)=q (Z)q (θ)  but a priori unknown hyperparameters, the variational-
Bayes algorithm reduces to subsequent updates of r  for fixed {m ,β ,V ,ν}  (“E-step”) and 
updates of {m ,β ,V ,ν}  for fixed r  (“M-step”).
A detailed derivation can be found in  [Bis06],  chapter  10.2.  We do not  review all  the 
technical calculation details but rather focus on their interpretation. Take a closer look at  
the  parameters  μ  and  Σ .  As  indicated  by  (19) and  (20),  the  mean  values  and 
covariances follow a Normal-inverse-Wishart distribution

NW −1
(μ ,Σ∣m ,β ,V ,ν)≡∏

k =1

K

N (μ k∣mk ,βk
−1

Σk )W −1
(Σk∣V k , νk) , (24)

see also Appendix A.7 and Appendix B in [Bis06]. Concentrate on the Normal distribution 
in  (24).  We  recognize  that  mk  is  the  most  likely  position  of  component  k 's  mean 
according to our current state of knowledge. Ignoring the covariance Σ k  for a moment, we 
see that βk  parametrizes the belief in mk . The larger βk , the smaller the variance of μk . 
Similarly,  V k  parametrizes  the  most  likely  covariance  of  component  k  and  νk  its 
reliability.  The  only  difference  between  the  notation  of  prior  and  posterior  are  the 
subscripted zeros on the hyperparameters. After we have seen the data, we have a new 
estimate for the means and covariances and a stronger belief. In fact, one can define an  
effective number of samples N k  for each component and the update equations for βk  and 
νk  read:

βk=β0k+N k (25)

νk=ν0k+N k (26)

where

N k≡∑
n=1

N

rnk (27)

To summarize, the Normal-inverse-Wishart distribution parametrizes an estimate for the 
component  means and covariances taking  into  account  the  number  of  samples  these 
estimates rely on. For the sake of completeness, we also state the update equations for 
mk  and V k  (cf. chapter 10.2 in [Bis06]):

mk=
1
βk

(β0 m0k+N k x̄k ) (28)

V k=V 0 k+N k Sk+
β0k N k

βk
( x̄k−m0k ) ( x̄k−m0k )

T (29)
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where

x̄k ≡
1
N k

∑
n=1

N

rnk xn (30)

Sk≡
1
N k

∑
n=1

N

rnk (xn−x̄k ) (xn− x̄k )
T (31)

For the component weights πk  there is just one hyperparameter αk  with update equation

αk=αk0+ N k . (32)

A guess of the component weights can be extracted from q (π )  for example by its mean, 
its  mode  or  by  drawing  a  sample  from  q (π ) .  For  more  details  about  the  Dirichlet 
distribution see Appendix A.5.
When the data X  are provided as importance-weighted samples X={(x1, ω1) , ... , (xN ,ωN )}
(cf. chapter 4.2), the update equations for N k , x̄k , and Sk  have to be adapted as

N k=N ∑
n=1

N

ω̄nr nk (33)

x̄k =
N
N k

∑
n=1

N

ω̄n rnk xn (34)

Sk=
N
N k

∑
n=1

N

ω̄n rnk (xn− x̄k ) (xn− x̄k )
T , (35)

where the

ω̄n≡
ωn

∑
n '=1

N

ωn '
(36)

denote the self-normalized weights.

3.3 Student's T mixture

The variational-Bayes approximation in the context of Student's T mixtures is an extension 
of the Gaussian case discussed in the previous chapter. Huge parts of the calculations are 
similar or even identical  to the Gaussian case. In typical  applications, the data do not 
originate from a Gaussian mixture. For example, we use the variational-Bayes algorithm to  
find a proposal density to importance sample an arbitrary target distribution. If the target 
asymptotically decays like 1/ x2  and the proposal is a Gaussian mixture, then the variance 
of the integral  estimate  (74) is infinite.  Student's T distribution has fatter tails and a T 
mixture can be tuned to finite integral-estimator variance. Also in the clustering application,  
Student's T mixtures appear to be more robust than Gaussians [AV07].
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3.3.1 Framework

The main trick is to rewrite Student's T distribution as an (uncountably infinite) Gaussian 
mixture

T ( x∣μ ,Σ , τ )=∫0

∞

N ( x∣μ ,
1
u

Σ)G (u∣τ
2

, τ
2 )du . (37)

This trick has also been applied by other authors ([SB05],  [AV07],  [TIF12]) in order to 
formulate the variational-Bayes framework for Student's T mixtures. An early approach has 
been published by Svensén and Bishop  [SB05]. They impose more factorization on the 
variational posterior than in later approaches. Their additional assumption is a factorization 
of the latent variable posterior  q (Z ,U )=q (Z)q (U ) .  Neglecting correlations between  Z  
and  U  can destabilize the algorithm as shown by Archambeau and Verleysen  [AV07]. 
Archambeau and Verleysen offer a method that only assumes  q (Z ,U ,θ)=q(Z ,U )q(θ) . 
However, they directly maximize the degrees of freedom without introducing a prior P(τ ) . 
Takekawa et al.  [TIF12] extend Achambeau and Verleysen's work with a dof prior  P(τ ) . 
They find the conjugate prior  Τ(τ∣ξ ,σ )  for  the degrees of  freedom but  only consider 
special  cases.  As far  as we know, this  is the first  work where the full  conjugate prior 
Τ(τ∣ξ ,σ )  is  presented.  With  this  extension,  it  is  possible  to  include  the  variational 
posterior as an informative prior in a subsequent run.

As in the Gaussian case, we assume the data to originate from a mixture but this time not 
with Gaussian but with Student's T components. The probability of a single sample reads:

P(xn∣θ)=∑
k=1

K

πk T (xn∣μk ,Σk , τk) , ∑
k=1

K

πk=1 (38)

with the set of parameters  θ={π ,μ , Σ ,τ } .  In equation  (18), we see how to rewrite the 
component weights π  as a latent variable model marginalized over Z . In a similar way, 
we can use (37) to reinterpret the degrees of freedom τ={τ1, ..., τK }  in the T distribution as 
the  result  of  marginalizing  over  a  latent  variable  U={unk∣n=1,. . ,N , k=1,... , K , unk>0} . 
Technically,  we assign  each datum  xn  an  additional  covariance scale  factor  for  each 
Gaussian component k . We can now formulate the likelihood as follows:

P(Z∣π )=∏
n=1

N

∏
k=1

K

πk
z nk

P(U∣Z ,τ )=∏
n=1

N

∏
k=1

K

G (unk∣
τk

2
,
τk

2 )
znk

P(X∣Z ,U ,μ , Σ)=∏
n=1

N

∏
k=1

K

N (xn∣μ k ,
1

unk

Σ k)
znk

P(X ,Z ,U∣θ)=P(Z∣π )P(U∣Z , τ )P(X∣Z ,U ,μ ,Σ) .

(39)

This likelihood is equivalent to that used by [SB05], [AV07], and [TIF12]. (39) reproduces 
the Student's T mixture (38) if the latent variables Z  and U  are marginalized out
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∑
Z

∫P(X , Z ,U∣θ)dU=P (X∣θ)≡∏
n=1

N

P(xn∣θ) .

To complete the model, we must define the prior P(θ) . We want the posterior to take the 
same functional  form as the prior; i.e.  we want to have the conjugate prior.  Then, the  
algorithm reduces to EM-like (hyper-)parameter updates. Like Takekawa et. al. [TIF12] we 
only  assume  factorization  as  q (Z ,U ,θ)=q(Z ,U )q(θ)  on  the  variational  posterior.  A 
possible conjugate prior turns out to be

P(θ)=P(π) P(μ ,Σ)P( τ )
P(π )=Dir (π∣α0)

P(μ ,Σ)=NW −1
(μ , Σ∣m0 ,β0 ,V 0 ,ν 0)

P(τ )=Τ( τ∣ξ0, σ0)

(40)

Τ (τ∣ξ ,σ )≡∏
k=1

K

Τ( τk∣ξk ,σ k )

Τ (τk∣ξk ,σk )≡CΤ(ξk ,σk)( ( τk /2 )
τk

2

Γ ( τk /2 ) )
σ k

exp (−ξk

τk

2 ) ,

where CΤ
−1

(ξ ,σ)=∫
0

∞

d τ( ( τ /2 )
τ
2

Γ ( τ/2 ) )
σ

exp(−ξ τ
2 )

(41)

ensures normalization one. The prior  (40) is almost the same as in the Gaussian case 
(19).  There  is  just  an  additional  factor  for  the  degrees  of  freedom  P(τ ) .  The 
hyperparameters in the Student's T case are  Θ={α0, m0 ,β0,V 0,ν 0,ξ0,σ0} . We parametrize 
the Normal  N  and the Normal-(inverse-)Wishart  NW −1  distribution in terms of (scaled) 
covariance matrices  V  and  Σ . For comparison with  [SB05] and  [AV07], note that they 
state an equivalent formulation in terms of precision matrices  W  and  Λ . The Normal 
distribution  has  no  specific  name  for  either  parametrization.  The  (inverse-)Wishart 
distribution is called inverse-Wishart distribution in the covariance and Wishart distribution 
in the precision parametrization. The update equations are equivalent, no matter whether 
one uses NW (μ ,Λ∣m ,β ,W ,ν)  or NW −1 (μ ,Σ∣m ,β ,S ,ν)  where V=W−1  and Λ=Σ

−1 .

The conjugate prior for the degrees of freedom (41) has also been found by Takekawa et 
al.  [TIF12] in  the  special  cases  σ k=0  and  σ k=1 .  We  could  not  find  an  analytical 
expression  for  its  normalization  constant  CΤ .  For  the  moment  we formally  derive  the 
update equations as analytical  expressions up to expectation values over  Τ(τk∣ξk ,σk) . 
Their analytical expressions (or approximations) are subject to future work. We discuss 
some properties of Τ  in chapter 3.3.2.

The general result implied by (16) reads

ln q (Z ,U )=Eq(θ) [ ln P( X , Z ,U ,θ)]+const
ln q (θ ) =Eq (Z , U )[ ln P(X ,Z ,U ,θ)]+const

(42)
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for two sets of latent variables Z={znk}  and U={unk } . We can calculate ln q (Z ,U )  from 
the general result  (42) by plugging in the model defined in (39) and (40). There are only 
two new terms  (Eq (θ) [ ln P(U∣Z , τ )] , Eq (θ)[ ln P(τ )])  compared to the Gaussian case. The 
rest is equal  up to rescaling of the covariance matrix  Σ  by  unk

−1 .  Moreover,  we may 
absorb Eq (θ)[ ln P( τ)]  into the normalization constant because it depends on neither Z  nor 
U . Inserting the explicit expressions for the probability density functions denoted in (39) 
yields (“E-step”)

q (Z ,U )=q (U∣Z)q (Z)

q (U∣Z)≡∏
n=1

N

∏
k=1

K

G (unk∣ak , bnk )
znk

q (Z)≡∏
n=1

N

∏
k=1

K

rnk
z nk , rnk=

ρnk

∑
k '=1

K

ρnk '

ak=Eq (θ)[ τk

2
+

d
2 ]

bnk=Eq (θ)[ τk

2
+

1
2

(xn−μ k )
T
Σ

−1
(xn−μ k)]

ln ρnk=Eq (θ)[ ln πk−
1
2

ln|Σ|−
1
2

(xn−μ k)
T

Σ
−1

(xn−μ k)+
τk

2
ln

τk

2
−ln Γ[

τk

2 ]] ,

(43)

where  d  denotes the dimensionality.  (43) is  obtained without  knowing anything about 
q (θ)  except that it is a proper probability distribution. To see this, first note that terms in 
ln P(X ,Z ,U ,θ)  with a Z  or U  dependence only appear in the likelihood ln P(X ,Z ,U∣θ)  
(39) but  not  in  the  prior  ln P(θ)  (40).  Further  note  that  znk  only  appears  as  overall 
exponent (factor on log scale) which directly fixes the functional form of  q (Z) .  U  only 
appears  as  linear  factor  or  as  ln unk .  Since the  same holds  for  the  log  of  a  gamma 
distribution,

ln G (u∣a ,b)=−ln Γ(a)+a ln b+(a−1) lnu−bu≡(a−1) lnu−bu+const ,

ln q (U∣Z)  can be expressed as the log of a gamma distribution.
We now illustrate how Τ(τ∣ξ ,σ )  arises as a conjugate prior for the degrees of freedom. 
By the general result (42):

ln q (θ)=Eq (Z , U)[ ln P (X ,Z ,U ,θ)]+const

=Eq(Z ,U)[ ln ( P(X , Z ,U∣θ)P(θ))]+const
=Eq(Z ,U)[ ln P(X , Z ,U∣θ)]+Eq (Z ,U )[ ln P (θ)]+const
=Eq(Z ,U)[ ln P(U∣Z , τ)] +Eq(Z ,U )[ ln P(τ )]+<independent of τ >

(44)

In the last step of (44), we insert P(X ,Z ,U∣θ)=P(Z∣π )P(U∣Z , τ )P(X∣Z ,U ,μ ,Σ)  from (39) 
and  P(θ)=P(π) P(μ ,Σ)P( τ )  from  (40). By assumption  q (θ)  takes the same functional 
form as P(θ) , in particular  ln q (θ)=ln q (π )+ ln q (μ , Σ)+ ln q(τ ) . We can identify all terms 
that depend on τ  in (44) with ln q (τ ) . We then obtain:
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ln q (τ )=Eq(Z ,U)[ ln P(U∣Z ,τ )]+Eq (Z ,U )[ ln P( τ)]+const
=Eq(Z ,U)[ ln P(U∣Z , τ)]+ ln P (τ )+const .

(45)

The distribution  P(U∣Z ,τ )=∏
n=1

N

∏
k=1

K

G (unk∣
τk

2
,
τk

2 )
znk

 is fixed by the model's likelihood  (39). 

Explicitly inserting the Gamma distribution's pdf (cf. Appendix A.3, formula (131)) into (45) 
yields:

ln q (τ )=∑
n=1

N

∑
k=1

K

Eq( Z ,U )[ znk (
τk

2
ln

τk

2
−ln Γ [

τk

2 ]+(
τk

2
−1) lnunk−

τk

2
unk)]

+ ln P (τ )+const .

(46)

The terms independent of  unk  can be computed using Eq (Z , U )[ znk ]=Eq(Z ) [znk ]=rnk . We are 
left with Eq (Z , U) [ znk unk ]  and Eq (Z , U )[ znk ln unk ] . In order to compute these, we write down the 
definitions of the expectation values with the explicit q (Z ,U )  from (43):

Eq (Z , U )[ znk unk ]≡∑
Z

∫d U q(Z ,U) znk unk

=∑
Z
∫ dU ∏

n '=1

N

∏
k '=1

K

rn 'k '
zn' k ' G (un 'k '∣ak ' ,bn ' k' )

zn' k' znk unk

=
znk∈{0,1}

rnk ∫
0

∞

dunk G (unk∣ak , bnk ) unk

=Eq (Z) [znk ] EG (unk∣ak , bnk)
[unk ]

(47)

The step from the second to the third line in (47) is implied by znk 's properties: znk∈{0,1}  
and for fixed n  there is exactly one k∈{0,... , K }  such that znk=1 . The other expectation 
value,

Eq (Z , U )[ znk ln unk ]=Eq (Z )[znk ] EG (unk∣ak ,bnk)
[ lnunk] , (48)

can be computed analogous to  Eq (Z , U )[ znk unk ] . The required expectation values over the 
Gamma distribution in (47) and (48) can be found in Appendix A.3. Putting all together, we 
obtain an expression for  ln q (τ )  in terms of the degree-of-freedom prior  P(τ )  and the 
hyperparameters rnk , ak , and bnk :

ln q (τ )=∑
n=1

N

∑
k=1

K

r nk [τk

2
ln

τk

2
−ln Γ[

τk

2 ]+(
τk

2
−1)(ψ(ak)−ln bnk)−

τk

2

ak

bnk
]

+ ln P (τ )+const .

(49)

Because ln q (τ )=ln [∏k=1

K

q (τk)]=∑
k=1

K

ln [q (τk) ]  and similarly for P(τ ) , the conjugate prior for 

a single τk  can be extracted from (49) as
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q( τk )

P( τk)
∝( ( τk /2 )

τ k /2

Γ [τk /2 ] )
∑
n=1

N

rnk

e
−

τk

2
∑
n=1

N

rnk (ln bnk−ψ(ak)+
a k

bnk
)
. (50)

In (50), we dropped a factor of exp(−∑
n=1

N

r nk ( ψ(ak)−ln bnk ))  since it has no τk  dependence 

and can therefore be merged into the normalization constant. By comparing (50) and (41), 

we  can  identify  q (τk)/ P(τk )∝Τ(τk∣∑
n=1

N

rnk ( lnbnk−ψ(ak)+
ak

bnk
) ,∑

n=1

N

rnk) .  If  we  now  impose 

P(τk)≡Τ ( τk∣ξ0k ,σ0k )  then  q (τk)=Τ ( τk∣ξk ,σk )  where  ξk  and  σ k  are determined by  (50). 
As a side remark note that  Τ ( τk∣ξk ,σ k )  is not the unique conjugate dof prior. If  we for 

example  choose  P(τk)≡Τ ( τk∣ξ0k ,σ0k )⋅e−ϵ τ
2

,ϵ>0 ,  then  q (τk)=Τ ( τk∣ξk ,σk )⋅e−ϵ τ
2

;  i.e., 

Τ ( τk∣ξ0k ,σ0k )⋅e−ϵ τ
2

,ϵ>0  is another possible conjugate prior.

The functional form of the other terms in q (θ) ,

q (θ)=P(π )P (μ , Σ) P(τ )
q (π )=Dir (π∣α)

q (μ , Σ)=NW (μ , Σ∣m ,β ,V ,ν)
q (τ )=Τ(τ∣ξ ,σ ) ,

(51)

follows from the general result (42) just like q (τ ) . The variational posterior (51) turns out 
to take the same form as the prior  (40), so  (40) and  (51) describe a conjugate prior for 
Student's T mixtures. Explicit  insertion of all  expressions into  (42) also determines the 
hyperparameter update equations (M-step),

αk=α0k+N k (52)

mk=
1
βk

(β0k m0k+Nk
U
x̄k ) (53)

βk=β0k+N k
U (54)

V k=V0+N k
U Sk+

β0

βk
N k

U
( x̄k−m0 ) ( x̄k−m0 )

T
(55)

νk=ν0k+N k (56)

ξk=ξ0k+R k
b−N k ψ(ak)+N k

U (57)

σ k=σ0k+N k , (58)

where we define

N k≡∑
k=1

K

rnk (59)
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N k
U≡∑

k =1

K

r nk

ak

bnk

(60)

x̄k ≡
1

N k
U ∑

n=1

N

rnk

an

bnk

xn (61)

Sk≡
1

N k
U ∑

k=1

N

rnk

an

bnk

(xn−μ)(xn−μ)
T

(62)

Rk
b
≡∑

n=1

N

rnk ln bnk (63)

ψ(t)≡
d
dt

Γ(t) , Γ(t)≡∫0

∞

x
t−1

e
−x

dx  (digamma and gamma function). (64)

We can now insert the explicit form of q (θ)  into (43) to evaluate the expectation values 
(E-step):

Eq (τ ) [ τk ]=<future work>

Eq (θ) [( xn−μk )
T
Σ

−1
(xn−μk )]= d

βk
+νk (xn−mk)V

−1
(xn−mk )

Eq (θ) [ ln πk ]=ψ(αk)−ψ(∑
k=1

K

α)
Eq (θ) [ ln|Σ|]=∑

i=1

d

ψ( νk+1+i

2 )+d ln 2− ln Σ k

Eq (τ )[τk ln τk−ln Γ [
τk

2 ]]=<future work> .

(65)

Only expectation values over  q (τ )  are new compared to the Gaussian case. The other 
expectation  values  can  be  found  in  the  literature,  for  example  Bishop's  book  [Bis06] 
(chapter 10.2) or in  [TIF12] by Takekawa et al.  Unfortunately, we cannot come up with 
analytical solutions for the new expectation values. As for the normalization constant of 
q (τ ) , these integrals are postponed to future work.
Even in the current state, it is possible to implement the Student's T update equations. The 
unknown integrals are just one dimensional and can be approximated using standard grid 
quadrature. However, the integrals cannot be numerically precalculated and reduced to a 
one dimensional interpolation table as done in [TIF12]. The distribution q (τk)=Τ ( τk∣ξk ,σk )  
and therefore all q (τ )  expectation values depend on two parameters where σ k  can take 
arbitrarily  large  values.  Takekawa  et  al.  [TIF12] state  P(τk)=Τ ( τk∣ξ0k ,0 )  as  prior  and 
q (τk)=Τ ( τk∣ξ0k ,1 )  as posterior.  That  contradicts  our  update  equation for  σ k  (58).  We 
believe that Takekawa et al. accidentally introduce a surplus factor of 1/ N k  in step (46) or 
(49). Unfortunately, their paper only states the final result such that it is impossible for us to 
compare individual steps of the derivation. In an implementation using the computations 
stated above, the normalization CΤ(ξk ,σ k )  and the q (τ )  expectation values in (65) must 
be numerically calculated in each update iteration for each component k .
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3.3.2 Conjugate prior for the degrees of freedom

The dof prior

Τ(τ∣ξ ,σ )≡CΤ(ξ ,σ )( ( τ /2 )
τ
2

Γ ( τ/2 ) )
σ

exp(−ξ
τ

2 ) , (66)

where  CΤ  ensures  normalization,  is  defined for  positive  τ  and  the  parameter  range 
−1<σ<ξ .  For  other  parameters,  Τ  is  not  integrable  and  consequently  not  a  proper 
probability distribution. Plots for several parameter values ξ  and σ  are shown in figure 1.
For large τ , Stirling's approximation

Γ( x)≈√ 2 π

x ( x
e )

x

, (67)

with e  denoting Euler's number, can be applied:

Τ∞(τ∣ξ ,σ)≡CΤ(ξ ,σ) (2 π )
−σ/2( τ

2 )
σ /2

exp(−( ξ−σ ) τ
2 ) . (68)

The integrability constraint σ<ξ  can be seen from the approximation for large τ  (68). The 
constraint  σ>−1  can  be  derived  similarly  by  inserting  the  expansion  of  the  gamma 
function

Γ( τ

2 ) =
τ→0 2

τ
+O (1) (69)

at zero. For further information about the gamma function see for example  [AS72]. The 
limiting approximations are fine to determine the allowed parameter ranges but in practice,  
both of them are not good enough to evaluate Τ  when τ  is of order one or ten. We could 
not find a useful approximation in that regime.
To calculate the normalization, we can split the integral as

CΤ(ξ ,σ)=∫
0

Λ

Τ(τ∣ξ ,σ )+∫
Λ

∞

Τ∞ (τ∣ξ ,σ) , (70)

where Λ  depends on the desired accuracy ( Τ∞=Τ  only holds in the limit τ→∞ ). Τ∞  can 
be integrated analytically such that the numerical integration to obtain  CΤ(ξ ,σ)  is only 
required for the first integral in  (70). Once  CΤ(ξ ,σ)  is calculated, the expectation value 
Eq (τ ) [ τk ]  can be split and partially treated analytically analogous to (70). We could not find 

a closed form solution for the other required expectation value Eq (τ )[ τk /2 ln τk /2−ln Γ [ τk /2 ] ]  
in either τ -range.
Note that the asymptotic Τ∞  (68) is a Gamma distribution (cf. Appendix A.3). The limiting 
Τ∞  could in principle be used as global approximation for Τ , even in the regime where 
Stirling's approximation does not hold. The approximation's mode is shifted though. We 
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also tried to match the 68% credibility interval and the mode of a gamma distribution to Τ . 
In that case, the asymptotic behavior for τ→∞  is not resembled correctly.
For  σ→∞  and a constant ratio  ξ /σ ,  Τ  becomes strongly peaked at its unique global 
maximum. For σ  large enough, Laplace's method is an alternative option to calculate the 
required integrals. What ” σ  large enough” means exactly depends on  ξ  in a nontrivial 
way.
Numerically dealing with  Τ  is difficult because numerator and denominator of the ratio 
(τ /2)

τ/ 2
/Γ ( τ/2 )  can take larger values than a double precision floating point number can 

represent. That is already a problem when we just want to plot  Τ  for fixed parameter 
values. This issue can be overcome, if we calculate ln(Τ)  on log-scale and exponentiate 
afterwards.

Figure 1: Plots of the conjugate prior for the degrees of freedom (66). Note that the mode 
only depends on the ratio ξ /σ .
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4 Monte Carlo sampling methods
We  discuss  standard  sampling  algorithms  in  this  chapter.  The  overall  goal  is  to  plot  
histograms of any probability density that is available as computer code. To draw a one 
dimensional histogram of parameter x1,  we need to calculate integrals like

∫d x1 ... d xn P(x1 ,... , xn)1[a , b] (x1) ,

where  [ a ,b ]  are the individual  x1  bins,  1  is  the indicator function, and  P  the target 
density. We discuss two algorithms to calculate the expectation value

E[ f ]≡∫d x1 ... d xn P(x1 ,... , xn) f (x1 , ... , xn) ,

of an arbitrary function f . An x i  histogram turns out to be the special case f (x1 , ... , xn)=  
1[a ,b ](xi) .

4.1 Markov chains

Markov chains can be used to draw samples from an arbitrary probability distribution that  
is available as callable computer code. An associated algorithm is well known: the famous 
Metropolis-Hastings algorithm [Met+53] [Has70]. It is a standard sampling tool in Bayesian 
inference  for  example  to  calculate  binned  marginal  distributions  as  needed  to  draw 
histograms. We run it as guided local random walk with a local Student's T or Gaussian 
proposal density. A detailed description is given in [Bea12].
The guided local random walk typically performs well on target distributions with only one 
local  maximum  (mode).  However,  if  the  target  distribution  has  multiple  disconnected 
regions, a single Markov chain tends to only explore one of them. Consider for example a 
one dimensional Gaussian mixture (17) with mean values -5 and +5, and both variances 
equal to 0.1. The mixture and a histogram of Markov chain samples are plotted in figure 2.

For illustration, we estimate the probability that a point in the left mode is proposed when 
the chain is in the right mode. As usual, we use a local Gaussian proposal such that the 
probability to propose xn+1  is

N ( xn+1∣xn ,σproposal)

when the chain is currently located at  xn . The proposal variance σproposal  typically takes 
values  slightly  below  two  after  200  proposal  adaptations  using  500  samples  each. 
Suppose the chain is at +4, just left of the right Gaussian's 3σ -interval. The probability to 
propose a  point  between -6  and  -4  (that  interval  exceeds the  3σ -interval  of  the  left 
Gaussian),
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∫
−6

−4

N (x∣+4,σ proposal)d x≤ [(−4)−(−6)]⏟ sup
−x∈[ 4,6 ]

N (x∣+4,σ proposal)
⏟

= 2 N (−4∣+4,σ proposal)

is less than 10−7  for σ proposal=√2 . If a call to the target takes about one second (this is the 
case for the distribution we consider in chapter 6), we expect to wait more than 3.8 months 
(107 s )  for a mode switch. Note that the chain is mostly farther from the left mode such 
that the true probability of a mode switch is less than this estimate. Further note that we  
only  consider  the  probability  that  a  point  in  the  other  mode  is  proposed  but  not  the 
acceptance probability. The situation tends to become much worse in higher dimensions – 
the curse of dimensionality.

Figure 2: The blue line shows a one dimensional Gaussian mixture  (17),  where both 
components have variance 0.1. The mean values are -5 and +5. The black 
histogram visualizes the samples acquired by a Gaussian local-random-walk 
Markov chain initialized at +5 with initial proposal variance 0.01. The chain was 
run 100,000 iterations using self-adaptation every 500 steps. Due to the local-
random-walk character,  only  one of  the Gaussians is found by the Markov 
chain.
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4.2 Importance sampling

Importance sampling is a well  established numerical  integration technique. It  allows to 
calculate expectation values with respect to a probability distribution using samples from a 
different probability distribution. It is explained in many textbooks, for example chapter 4.5  
in [Lem09].

4.2.1 Basics

We  want  to  calculate  the  expectation  value  of  a  function  f  under  the  probability 
distribution P :

EP( X)[ f (X)]≡∫ f (x )P(x )dx . (71)

A multiplication by 1=q (x) /q(x )  and application of the law of large numbers (cf. chapter 
2.3) yields an estimate using samples distributed like q :

EP( X)[ f (X)]≡∫ f (x )P(x )dx

=∫ f (x)
P(x )

q(x )
q (x)dx

= lim
N →∞

1
N ∑

i=1

N

f (xi)
P(x i)

q(x i)
x∼q

(72)

Note that we get the standard law of large numbers when  q  and  P  are identical. The 
quantities  ωi≡P (xi)/q (xi)  are  called  importance  weights.  The  set  of  N  importance-
weighted samples {(x i ,ω i)}  where x∼q  can be used like a set of N  samples distributed 
like P . However, N  weighted samples always contain less information about P  than N  
unweighed samples from  P .  We discuss the quality of importance samples in chapter 
4.2.2.

We define the N -samples expectation-value estimator

μf
N≡

1
N

∑
i=1

N

ωi f (x i) x∼q

and the true expectation value  μf≡EP (X )[ f (X )] . When we want to calculate expectation 
values like (72) numerically, we can only draw a finite number of samples N . Therefore 
we only have the random variable μf

N  as an estimate of the true expectation value we are 

after. It shall be emphasized again: μf
N  is a RANDOM VARIABLE. Its full distribution is for 

our  purposes of  little  interest.4 We only  want  to  prove that  μf
N  provides an unbiased 

estimate  of  our  target  expectation  value  (i.e.  E [μ f
N ]=EP (X )[ f (X)] )  and  calculate  its 

variance as uncertainty estimate.
The full mathematical proof of unbiasedness is given in  (73). By the strong law of large 
numbers, M  iid samples of μf

N  average to the true expectation value in the limit M →∞ . 

4 For N →∞  it converges to a Gaussian by the central limit theorem.
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Note that (μ f
N )m  is itself a sum over data points that we label xnm . Further note that the set 

of all these data points {xnm}  is iid according to q  by assumption. Exchanging sums and 
application of the law of large numbers finally proves unbiasedness:

E [μ f
N ]= lim

M →∞

1
M

∑
m=1

M

(μf
N )m= lim

M→∞

1
M ∑

m=1

M
1
N ∑

n=1

N

f (xmn)
P( xmn)

q(xmn)

=
1
N ∑

n=1

N

lim
M→ ∞

1
M ∑

m=1

M

f (xmn)
P(xmn)

q (xmn)

=
x∼q 1

N ∑
n=1

N

∫ f (xn)
P(xn)

q (xn)
q(xn)dxn

=
1
N

∑
n=1

N

∫ f (xn) P(xn)dxn=∫ f (x) P(x )dx

≡EP( X)[ f (X)] .

(73)

The variance of μf
N  is

var (μf
N )≡E [ (μf

N
−μf )

2 ]= 1
N [∫ P(x)

q (x)
P (x) f (x )

2 dx−(∫ P (x) f ( x)dx)
2

] (74)

(proof is similar to (73)). Like for the mean value, we can only rely on our N  samples to 
estimate the variance. We define the unbiased variance estimator:

(σ f
N )

2
≡

1
N (N −1)

∑
i=1

N

( f (x i)ωi−μ f
N )

2
x∼q (75)

Unbiasedness can be proved similar to (73). The square root of (σ f
N )

2
 is NOT an unbiased 

estimate of the standard deviation of μf
N  but still quantifies its reliability. σ f

N  systematically 

overestimates the standard deviation because E [√ f (x )]≤√ E [ f (x )]  is implied by Jensen's 
inequality.

4.2.2 Adaptive importance sampling

In  principle,  IS  with  any proposal  q  that  covers all  of  P 's  support  converges to  the 
desired expectation value in the limit of infinitely many samples (cf. (72)). Unfortunately we 
cannot take that limit on a computer but only draw a finite number of samples. So, the 
main task when applying importance sampling is to get as much information as possible 
out of as few samples as possible. We should therefore try to minimize the uncertainty of  
our estimator  μf

N  under certain constraints. For reliable results, the proposal density  q  
must be sufficiently “close” to P . The proposal must be a properly normalized probability 
density  and  we  must  be  able  to  draw  samples  distributed  according  to  q .  A good 
compromise between complexity  of  q  and its  “distance”  to  P  are Gaussian ( N ,  cf. 
Appendix A.1) and Student's T ( T , cf. Appendix A.2) mixtures
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q (x∣θ)=∑
k=1

K

πk qk( x∣θk ∖{πk }) , qk∈{N ,T }, ∑
k=1

K

πk=1, πk ≥0 , (76)

where θ  denotes the parameters of a Gaussian mixture θk={πk ,μk , Σk}  or a Student's T 
θk={π k ,μk , Σk ,νk }  mixture.  In  the  following  we  restrict  all  proposal  densities  to  the 
functional  form  (76).  We  shall  now  minimize  the  uncertainty  of  μf

N ,  i.e.  its  variance 
denoted in equation (74), with respect to q . For that purpose it suffices to inspect the term 
in the difference that actually depends on q . It is obviously impossible to adapt q  for all 
possible functions f  at the same time. However, in a typical Bayesian application P  is the 
posterior and only known up to its normalization constant, the evidence Z . In that case, 
f (x)≡Z  is the unknown normalization constant and  P  the normalized posterior but we 
typically  only  have access to  the  product  Z⋅P .  Note  that  multiplicative  constants  are 
invisible to Markov chains. It is therefore sensible to optimize  q  for a constant function 
f (x) . We only need to minimize the first term of var (μf

N )  (74) when we want to minimize 

with respect to q (x) . Application of Jensen's inequality connects the uncertainty var (μf
N )  

with the Kullback-Leibler divergence (see chapter 3.1) KL(P∥q)  as

log (∫ P (x)

q(x )
P(x )dx) ≥

Jensen∫ ( log
P(x )

q(x ) ) P(x)dx≡KL(P∥q) . (77)

In  (77) we dropped the constant prefactor  Z2
/ N . We are NOT guaranteed to minimize 

var (μf
N )  when we minimize the Kullback-Leibler divergence. Nevertheless, we can hope to 

approach  the  unique  global  minimum  P=q  because  KL(q∥P)=0⇔KL(P∥q )=0⇔  
var (μf

N )=0⇔P=q .  Population  Monte  Carlo  (PMC),  a  common  adaptive  importance 
sampling algorithm is based on the minimization of  KL(P∥q) .  All  of PMC's details are 
described for example in [Cap+08] or [Hoo+12]. This is also the approach used in [Bea12]. 
An equivalent5 approach is to draw samples x∼P  (or importance-weighted samples) and 
maximize the log likelihood

ln [∏n

q(xn∣θ)]=∑
n=1

N

ln q (xn∣θ) =
x∼P

N →∞
∫P (x) ln q (x∣θ)dx=const−KL(P∥q) (78)

where

const=∫P(x ) ln P (x)d x , xn∼P ,

with respect to the parameters  θ . In that approach, one effectively assumes the target 
density  P  to be a mixture like (76) during the proposal adaptation. It is also possible to 
use the variational-Bayes algorithm to infer a full probability distribution for the parameters 
θ . One can then take the mean or mode of  θ 's distribution as parameter values for a 
Gaussian or Student's T mixture proposal. We provide a discussion of different adaptation 
schemes in chapter 5.

5 Strictly speaking these methods are only equivalent in the limit  N →∞  using the law of large numbers. 
We consider them as equivalent  anyway because PMC approximates the Kullback-Leibler integral  in 
exactly the same way as indicated by (78).
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The quality of importance-weighted samples can be judged by estimates of KL(P∥q) . The 
Kullback-Leibler divergence can be approximated using the law of large numbers as

KL(P∥q)≡∫ d xq (x)
P( x)

q(x )
ln

P(x)

q (x)
=

N →∞ 1
N

∑
i=1

N

ωi ln ωi , xi∼q , (79)

if  P(x) 's normalization  Z  is known. In standard Bayesian applications,  Z  is unknown 
and there is no access to  P(x)  and therefore the correctly normalized weights  ωi . We 
only  have  their  unnormalized  versions  Z⋅P (x)  and  ω̂i≡ωi⋅Z .  We  can  use  the  self-
normalized importance weights

ω̄i≡
ω̂i

∑j
ω̂ j

=
N →∞ ω̂i

N Z
=

ωi

N
, x i∼q , (80)

as  approximation  of  the  correctly  normalized  weights  ωi  divided  by  the  number  of 
samples  N .  Replacing  the  true  by  the  self-normalized  weights  in  (79) yields  an 
approximation

KL(P∥q) =
N →∞

∑
i=1

N

ω̄ i lnω̄ i+ ln N , x i∼q (81)

calculable without knowing Z .

The Kullback-Leibler divergence takes values out of [ 0,∞ ]  where 0  is equivalent to P=q . 
Following [Kil+09], [BC13], and [Bea12], we use the normalized perplexity

P ≡
1
N

exp(−∑
i=1

N

ω̄i ln ω̄i) (82)

as estimate for exp(−KL(P∥q))  instead of directly KL(P∥q) . P  takes values out of [ 0,1 ]  
such that P  close to one indicates good agreement between P  and q . In practice one 
should aim for a perplexity as high as possible. The use of P  over KL(P∥q)  is motivated 
as dealing with percentages is more natural for a human than with an abstract distance 
[GG14].

Another assessment criterion is the effective sample size

ESS≡
1

1+C2 , C2≡
1
N

∑
i=1

N

( N ω̄i−1 )
2 . (83)

The effective sample size estimates how large an equivalent set of unweighted iid samples 
would be. Suppose N 0  samples have weight ω̄i=0  and N c

=N −N 0  samples have weight 

ω̄i=1 /N c .  Then  C2
=(N −N c

)/ N c  and  the  ESS=N c
/N  is  the  fraction  of  samples  with 

nonzero weight. The same reasoning can be found in  [Bea12] and  [LC95]. The ESS is 
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connected  to  the  variance  estimate  introduced  in  (75) via  Z2 C2 =
N →∞

(σ f
N )

2
.  Importance 

samples with  higher  effective sample size therefore result  in  an integral  estimate with 
lower uncertainty.
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5 Importance sampling initialized with Markov 
chains

Using the sampling tools in chapter 4, we suggest an algorithm that automatically finds a 
reasonable proposal density for importance sampling. We discuss why it is sensible to 
restrict the proposal to Gaussian or Student's T mixture densities (76) in chapter 4.2.2. In 
this  chapter,  only  Gaussian  mixtures  are  considered  because  the  variational-Bayes 
algorithm with Student's T mixtures is not fully developed yet.
We suggest to first run multiple Markov chains in order to find and explore the modes 
(regions with high probability mass compared to its vicinity) of the target density. These 
samples are clustered using the variational-Bayes algorithm to form an initial  proposal 
density for importance sampling. After a sufficiently large importance sampling run with 
that mixture, the importance samples are used to update the proposal density again using 
the variational-Bayes algorithm. This algorithm is an enhanced version of what Beaujean 
and Caldwell propose in  [Bea12] and [BC13]. Figures 3 and 4 show the original and the 
enhanced algorithm respectively. The major disadvantage of the original algorithm is that  
the number of components in the proposal mixture cannot automatically be determined. 
Another  minor  issue is that  the information gained from the Markov chains cannot be 
included into proposal updates after hierarchical clustering.

Figure 3: Illustration of the algorithm presented in [Bea12] and [BC13]. This is a modified 
version of figure 4.1 in  [Bea12]. The individual steps are subscripted with the 
challenges solved by the new algorithm.
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Figure 4: Illustration of the enhanced algorithm. This is a modified version of figure 4.1 in 
[Bea12].

5.1 Markov chain prerun

In this first step, the main goal is to transform the target function P  into samples for further 
processing. Typically, P  exists as callable code on a computer but does not have a simple 
closed-form expression. In particular, we cannot analytically calculate integrals of interest 
such as expectation values and the evidence. In many cases, only a function proportional  
to the target distribution P  is available. The reason is that every nonnegative integrable 
function  P' : ℝ

d
→ℝ0

+  with  nonzero  integral  defines  a  probability  density  function 

P(x)≡P '( x)/∫P ' (x)d x .  We  can  often  formulate  P'  but,  as  mentioned  before,  not 
analytically integrate it. However, by the strong law of large numbers (cf. chapter 2.3) we 
can approximate expectation values by a finite number of samples distributed according to  
P .  Hence,  we  need  an  algorithm to  draw  samples  from  P  while  we  only  have  its 

unnormalized version P' . Looking into chapter 4.1, we find an algorithm that meets this 
requirement  for  unimodal  target  densities.  Although  local-random-walk  Markov  chains 
cannot cope with multimodal target distributions, each chain produces reliable samples of 
the one mode it is trapped in if run long enough. We therefore run multiple chains and 
combine the samples as described in chapter 5.2.
The resulting Markov chain samples strongly depend on the proposal  density  and the 
initial position. How to overcome most difficulties related to the Markov chains is explained 
in [BC13] and more detailed in [Bea12]. For the toy examples we discuss in this chapter, 
we run ten chains with a Gaussian proposal density. The initial covariance matrix is set to  
0.1 times the unit matrix. Note that this Markov chain step is unchanged compared to the 
algorithm presented in [BC13]/[Bea12].

5.2 First Proposal for importance sampling

In this step, we want to use the Markov chain samples to generate a Gaussian mixture

q (x∣θ)≡∏
n=1

N

q(xn∣θ) , q (xn∣θ)≡∑
k=1

K

πk N k (xn∣μ k , Σk) , ∑
k=1

K

πk=1, πk≥0 (84)

as proposal density for importance sampling. Given the samples  x={x1, ... ,xN}  and the 
number of  components  K ,  one approach to  minimize the IS related uncertainty  is  to 
maximize the likelihood  q (x∣θ)  with respect to the parameters  θ={π ,μ , Σ}  (cf. chapter 

30



4.2.2). Note that  K  is implicitly included in  θ  as  μ={μk }k=1
K  and  Σ={Σk}k=1

K .  The first 
question  to  be  addressed  is  how  many  components  K  the  mixture  should  have.  A 
standard approach is to penalize the likelihood for too many free parameters. Then one 
optimizes a penalized likelihood

~q (θ ,K )≡q(x∣θ)+ penalty (K) , where q (x∣θ)=∏
i=1

N

q(xn∣θ) (85)

for several fixed values of K  with respect to the parameters θ  and chooses the solution 
that maximizes ~q . A summary of common information criteria (= likelihood penalizations) 
is given in [BG97]. Note that maximizing the likelihood is an ill-posed problem in the sense 
that for K≥1 , the likelihood becomes arbitrarily large when a component collapses onto a 
single sample (see chapter 9.2.1 in [Bis06]). The penalty term is required because surplus 
components do not change the unpenalized likelihood. Consider for example a maximum 
likelihood  solution  for  some  fixed  number  of  components  K .  Introducing  a  new 
component  K +1  with  negligible  weight  πK +1≈0  does  not  change  the  unpenalized 
likelihood.
The approach explained above requires to adapt multiple mixtures with different numbers 
of components. A less compute intensive method is to set a relatively high initial  K  and 
remove components whose weights  πk  drop below some threshold.  This can also be 
motivated by the later use of q (x∣θ)  as proposal for IS: Only few samples are drawn from 
components with small weight. Thus those components do not essentially contribute to the 
final samples. Moreover, we adapt μ k  and Σ k  using the samples effectively assigned to 
component  k .  If  there  are  too  many  components,  there  are  not  enough  samples  to 
accurately learn all the μ k  and Σ k .

5.2.1 Hierarchical clustering

Hierarchical clustering is an algorithm that reduces a Gaussian mixture density  (84) to 
another Gaussian mixture with fewer components. The idea is to reduce the complexity 
while preserving as much information as possible. A full explanation of the algorithm is 
available in [GR04]. The user has to specify the input mixture and an initial guess for the 
output mixture. Beaujean and Caldwell [BC13] [Bea12] propose to summarize the Markov 
chain samples (cf. chapter 5.1) by a Gaussian mixture and then reduce that mixture with 
hierarchical clustering. In the following, we briefly review their suggestion how to set the 
input mixture and the initial guess for the output mixture.
The input mixture is generated by partitioning the chains into “short patches” of length L , 
where  L  is user defined. We use  L=100  for the toy examples discussed later in this 
chapter. Each patch forms a Gaussian component in the initial mixture with sample mean 
and sample covariance as parameters. All components in the initial mixture are assigned 
equal  weight.  The  idea  behind  these  short  patches  is  to  summarize  the  small  scale 
features of the target density. The local-random-walk Markov chains slowly diffuse through 
parameter  space  such  that  the  short  patches  summarize  local  features  of  the  target 
density. Note that setting all  component weights equal does typically not reproduce the 
correct  relative  weighting  between  isolated  modes  (cf.  chapter  4.1).  If  the  target  has 
multiple modes, each local-random-walk Markov chain only explores one of them. The 
samples of one chain are distributed according to only one of the modes. The probability  
for a chain to end up in a specific mode is NOT equal to the total probability mass of that  
mode.  Combining  multiple  chains  does  therefore  NOT  reproduce  samples  that  are 
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distributed according to  the full  target  distribution.  Nevertheless,  the mean values and 
covariance correctly summarize the local structure of the target.
The initial guess for the output mixture is generated from “long patches” in three steps.  
First,  the  chains  that  have explored the  same mode are  grouped together.  Then,  the 
samples of each chain group are split into patches. Finally, Gaussians are created from 
these patches. Our grouping criterion is the Gelman-Rubin R value proposed in  [GR92]. 
The R value is defined for a group of at least two Markov chains. An R value of  O(1) 
means  that  the  chains  have  converged  (e.g.  have  explored  the  same  mode).  The 
procedure of grouping the chains is done as follows: The first chain opens a new group.  
The second chain is inserted into the first group if the R value of both chains is less than a 
certain user defined critical  R value  Rcrit  (we use  Rcrit=2  for the toy examples in this 
chapter). If the R value is larger than Rcrit , the second chain opens a new group. The next 
chain is merged into an existing group if the common R value is below the threshold Rcrit , 
otherwise it opens a new group. This procedure is repeated until all chains are assigned to 
a group. The initial output mixture is created such that each chain group contributes with  
Kg  components, where the number of components per group Kg  is user defined. We use 
Kg=15  for the toy examples unless stated otherwise. Kg  Gaussians are created from a 

chain  group  as  follows:  If  the  chain  group  contains  at  most  K g  chains,  divide  each 
individual chain in the group into ⌊ Kg /kg ⌋  or ⌈ Kg /kg ⌉  patches6, where k g  is the number of 
chains in the group and the operators  ⌈ ⌉  and  ⌊ ⌋  denote ceiling and floor. Each patch is 
summarized as Gaussian component with sample mean and sample covariance. If  the 
chain group contains more chains than  K g , combine the individual chains to one long 
chain. Then k g=1  and the first case applies.

5.2.2 Population Monte Carlo

The PMC algorithm presented in [Kil+09] addresses the problem of improving a Gaussian 
or Student's T mixture proposal using importance samples. Its input consists of a Gaussian 
or  Student's  T  mixture  and  importance-weighted  samples.  The  output  is  a  Gaussian 
mixture that is “closer” to the target density in the sense of KL(P∥q)  (cf. chapter 4.2.2). It 
is  based on the maximum likelihood approach; i.e.  it  tries to increase  q (x∣θ)  in each 
iteration.  Like  VB,  PMC  is  an  EM-like  algorithm.  In  the  E-step,  PMC  calculates  the 
responsibility matrix (similar to what we call r  in chapter 3.2) using the fixed input mixture. 
In  the  subsequent  M-step,  the  responsibilities  are  fixed  and  used  to  maximize  the 
likelihood q (x∣θ)  with respect to the parameters θ . Unlike VB, PMC directly adapts the 
parameters θ , not a set of hyperparameters.
To  use  PMC,  we  have  to  specify  its  input;  i.e.  a  Gaussian  mixture  and  importance-
weighted  samples.  We  use  the  “long  patches”  introduced  in  5.2.1 as  initial  Gaussian 
mixture and the Markov chain samples. Due to the local-random-walk character, the MC 
samples are highly autocorrelated. We reduce the autocorrelation by taking every 100 th 

sample only. All importance weights are set to one, which is not obvious in case of multiple 
modes. If we assume that all Markov chains are globally converged, then the samples are 
distributed according to the target distribution. In that case, we can reinterpret the samples 
as importance samples where proposal and target density are the same. The importance 
weights are all equal to one then. We know however, that a local-random-walk Markov 
chain  (cf.  chapter  4.1)  typically  only  samples  from  a  single  mode.  Reinterpreted  as 

6 If  kg  does not divide  K g ,  it  is  impossible to make each chain contribute with the same number of 
components. In that case, the first chains contribute with one more component than the last ones such 
that the whole group contributes with exactly K g  components.
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importance samples,  the  proposal  function of  an individual  chain is  not  the full  target  
density but the target restricted to one mode. Correct sample weighting would require to 
know the probability mass inside each mode. By setting all weights to one, we assume that 
all modes have equal integrated probability. The modes are usually well separated such 
that  components  in  different  modes  have  negligible  overlap.  As  a  consequence,  the 
responsibility of a component for a sample in a different mode is insignificant. Thus, PMC 
tends  to  locally  find  accurate  Gaussian  mixtures  but  fails  to  estimate  the  relative 
component  weights  between  components  located  in  different  modes.  The  misjudged 
weights can be corrected in further proposal updates with weighted samples (cf. chapter  
5.3).
All papers we are aware of ([BC13], [Cap+04], [Cap+08], [Kil+09]) propose to perform only 
one PMC update with the same set of samples. Multiple updates can lead to “overfitting”.  
This effect is discussed in more detail in Bishop's book  [Bis06], chapter 9.2.1: When a 
mixture component collapses onto a single sample in one dimension, the likelihood q (x∣θ)  

increases with shrinking variance of that one component (N (xn∣μk ,σ k) ∝
σ k→ 0

1/σ k∈q (x∣θ)) . In 

higher  dimensions,  the  same  effect  occurs  for  a  singular  covariance  matrix  when  a 
component  gets  assigned  less  samples  than  the  dimensionality.  Because  we  prune 
components with too few effective samples, overfitting is no problem in our approach.
We run PMC for exactly 1,000 updates using the output mixture from the previous step as 
input  to  the  next.  Note  that  PMC  offers  no  intrinsic  convergence  criterion,  see  the 
discussion in chapter 5.2.4 for further details. After each step, we prune components with 
weight πk  less than (2 K)

−1  where K  is the number of components of the long patches. 
The critical component weight (2 K)

−1  is motivated as follows: Suppose the target density 
is a Gaussian mixture consisting of K t  components and all of them have equal weight; i.e. 
πk=1/ K t ∀ k .  It  seems sensible to prune components that have much smaller weight 
than the average. In practice, we have to specify a cutoff that defines “much smaller”. Half  
of the expected average weight (2 K)

−1  works well on toy targets.

5.2.3 Variational Bayes

A detailed explanation of the variational-Bayes algorithm with Gaussian mixtures can be 
found  in  chapter  3.2.  Unlike  PMC,  VB  does  not  directly  adapt  the  parameters  of  a 
Gaussian mixture. It rather matches a set of hyperparameters that describe the probability 
distribution of the parameters. The required input consists of a set of samples, the prior 
hyperparameters, and an initial guess for the posterior hyperparameters. Like for PMC, we 
thin the MC samples by a factor of 100. In the following, we explain how to set the prior 
hyperparameters  α0 ,  m0 ,  β0 ,  V0 ,  and  ν0 ,  and  how  to  initialize  their  posterior 
counterparts (without subscript zero).
In order to set the hyperparameters we should first try to understand their meaning. The 
“accuracy parameters” αk  (52), βk  (54), and νk  (56) are all updated as prior value plus 
effective number of samples N k  assigned to component  k . They can be interpreted as 
the number of observations giving rise to our current estimates of the component weights,  
means, and covariances, respectively. The component mean and covariance estimates 
themselves are coded into  mk  and  V k .  mk  denotes mean and mode of the probability 
distribution  for  component  k 's  position  μ k .  If  estimates  of  the  component  means  or 
modes are available, they should enter mk . The interpretation of V k  is the most difficult. 
Before  interpreting  V k ,  first  note  that  neither  the  Wishart  nor  the  inverse-Wishart 
distribution is symmetric. If there is prior knowledge, it is not always obvious whether to 
tune  mean  or  mode  of  Σ k 's  distribution.  Second,  note  that  VB  can  equivalently  be 
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formulated in two ways: Using the inverse-Wishart distribution and covariance matrices or 
using the Wishart distribution and precision (inverted covariance) matrices. In chapter  3, 
we present the version with covariance matrices. A formulation in terms of precisions can 
be found in chapter 10 in Bishop's book [Bis06]. Knowing about both formulations, one has 
to  decide  whether  to  tune  either  mode  or  mean  of  either  the  covariance  Σ k  or  the 
precision  Σ k

−1  when  prior  knowledge  or  a  posterior  estimate  is  present.  Luckily,  the 
difference between all those approaches becomes negligible for νk≫d  because they all 
result in setting V k=O(νk±d )⋅Σ k . By d , we denote the dimensionality of μk  and Σ k .

In our setup, no prior information about the target distribution is available. We therefore 
tune the hyperparameters to approximate a proper uninformative prior.
The accuracy parameters can simply be set to their mathematical lower limits plus some 
positive  number  ϵ≪1 .  We  set  α0k=10−5  which  means,  interpreting  the  Dirichlet 
distribution,  we  know  that  our  prior  has  too  many  components.  In  fact  the  Dirichlet 
distribution  favors  solutions  with  weight  π0 k  close  to  zero  if  α0 k<1 .  The  uniform 
distribution is exactly obtained if all  α0k=1 . In practice, it is only important to set all  α0k  
close to one or zero and to have sufficiently many samples N k ≫1 . Note that the Dirichlet 
distribution constrains  α0k>0 ,  in particular  α0 k=0  is  forbidden.  In the limit  β0k→0  the 
Gaussian in the Normal-Wishart distribution approaches the uniform distribution. We are 
not  allowed  to  set  β0k=0 ,  so  we  set  β0k=10−5 .  ν0 k  is  constrained  by  ν0k>d−1 , 

consequently we set ν0k=d−1+10−5 .
We do not have prior estimates for the mean values  m0 , but we must choose a set of 
favored points. We can tune  m0  such that it has the least impact on  m , the posterior 
component mean estimates. This is achieved for m0=0  because then the update equation 
for mk  (28) is just the mean value of the samples assigned to component k  (if we neglect 
the influence of β0 : βk=β0k+N k≈N k ).
In order to set  V0 k , best practice is again trying to make its posterior equivalent  V k  as 
independent of the prior as possible. Looking at the update equation (29), we see that it 
should fulfill V0 k≪N k Sk ; i.e. it should be much less than the sample covariance times the 
number of samples. This cannot be assured in advance, when the sample covariances of 
the individual components are not known yet. V0 k  therefore has to be tuned to the actual 
problem. We usually set V0 k=I⋅10−10  or V0 k=I⋅10−20 , where I  denotes the unit matrix.
To  summarize,  the  prior  accuracy  parameters  should  be  chosen  close  to  their  lower 
bounds, m0=0 , and V0 k  should be diagonal and each entry should be much less than the 
expected posterior component covariances.
Our stopping criterion is a relative change of L (q)  less than 10−10  or an absolute change 
of less than 10−5 . In addition, we allow at most 1,000 updates. VB is rather robust against 
bad initial posterior hyperparameters. We simply use the “long patches” as for hierarchical  
clustering  and PMC. For  details  refer  to  the  implementation  of  “GaussianInference”  in 
pypmc (cf. Appendix B). We pass the long patches as “initial_guess”.
In order to automatically  find a reasonable number of  components,  we finally  have to  
specify a criterion which components to prune. For VB, we remove a component, when its 
effective  number  of  samples  N k  drops  below  a  certain  value.  By  experience, 
N k <N /2 K long patches  prunes only  unimportant  components provided that  enough samples 

and  initial  components  are  present.  This  is  the  same  prune  criterion  as  for  PMC 
(πk

PMC
<1/2K long patches)  since PMC sets the component weights to  πk

PMC
=N k /N . We check 

for removable components after each E-step.
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The VB output is an approximation of the full  probability distribution for the parameters 
θ={π ,μ , Σ} . We use the mode of the parameter distribution,

πk=
αk−1

∑
k=1

K

αk−K

if αk>1 else 0, μk=mk , Σ k=( νk−d )
−1

⋅V k ,
(86)

as parameters for our initial IS proposal. Note that Σ k  is determined by the mode of the 
distribution  of  its  inverse  Σ k

−1 .  That  is  because  our  VB implementation  in  pypmc (cf. 
Appendix  B)  follows  the  notation  of  Bishop's  book  [Bis06] using  precision  instead  of 
covariance matrices. Other methods to extract parameter values from the distribution are 
not considered in this work.

5.2.4 Discussion

We compare  the  algorithms described above mainly  by  the  quality  of  the  importance 
samples drawn from the resulting proposal  (84). Most important is the effective sample 
size introduced in chapter  4.2.2. With low ESS, more samples and consequently more 
function  evaluations  are  needed  to  calculate  expectation  values,  such  as  the  binned 
marginal  likelihood  needed  for  histograms.  The  perplexity  (82) quantifies  the  distance 
between  target  and  proposal.  We  analyze  perplexity  and  effective  sample  size  as  a 
function of the number of Markov chain samples. We would like to keep the Markov chains 
as  short  as  possible  for  two  reasons.  First,  Markov  chains  are  purely  sequential  
algorithms, so the ability of massive parallelization as available on a computing cluster 
cannot speed up the chains. Second, the Markov chain samples are the only samples that 
do not directly enter the evidence calculation. Another criterion is the ability to reliably 
determine  a  reasonable  number  of  components.  For  this  step  alone,  the  number  of  
components  is  not  important.  Only in  further  updates (cf.  chapter  5.3),  the number of 
samples needs to grow with the number of components. How many components to take is 
an open question in the original algorithm [BC13] [Bea12].
In our tests, only VB could robustly prune unnecessary components and at the same time 
achieve at least moderate perplexities and effective sample size. In contrast to hierarchical 
clustering, VB and PMC optimize the proposal density using the full data set, not just a 
Gaussian mixture of “short  patches”.  Consequently these algorithms should be able to 
produce a better fit in the sense of higher perplexity and ESS (cf. chapter 4.2.2).

5.2.4.1 Asymptotically Gaussian toy target

We first apply the algorithms to an asymptotically Gaussian target:

P(x)=N ( y (x)∣0,Σ )

y (x)={x2−β ( x1
2
−σ1

2 ) i=1

x i i≠1

Σ =diag(σ1
2 ,1,… ,1)

(87)
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Formula (87) and figure 5 represent the PDF of the banana shaped target density used in 
[Kil+09].  It  is  a  multivariate  Gaussian  twisted  in  the  first  and  second  dimension.  The 
parameters are fixed to the same values as in  [Kil+09]:  β=0.03 ,  σ1

2=10 . This example 
target  density  is  well  defined  for  any  dimension  ≥2 .  We  concentrate  on  the  twenty 
dimensional case.

Figure 5: contour plot of the two dimensional Kilbinger banana (cf. formula (87))

Figures 6 and 7 show typical results of the three proposed algorithms. We measure their 
average perplexities and effective samples sizes in 100 runs with different Markov chain  
data.  All  sampling  results  are  summarized  in  table  1.  First  note  that  the  hierarchical 
clustering does not reduce the number of components. Moreover, it only achieves much 
lower  ESS  compared  to  the  variational-Bayes  algorithm  (except  for  ¼  million  MC 
samples). In case of one or one and half a million Markov chain samples, PMC achieves 
the highest ESS and reduces unnecessary components from the mixture. However, when 
there are only half or quarter a million samples, PMC is no more able to efficiently prune  
and yields the lowest ESS. Only the variational-Bayes algorithm manages to reduce the 
fifteen initial components to about four in all cases. PMC achieves a higher ESS than VB 
when enough (more than one million) samples are provided. When only ¼ million samples 
are available, the hierarchical clustering reaches the highest ESS but the variational-Bayes 
algorithm can compete giving only three components instead of more than fifteen for the 
price of 3% ESS.
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Figure 6: Typical  result  when  running  the  algorithms  discussed  in  this  chapter  using 
500,000 Markov chain samples (a). The MC data are thinned by a factor 100 
and used to infer a Gaussian mixture by hierarchical clustering (b), Population 
Monte Carlo (c) and the variational-Bayes algorithm (d). The colored ellipses 
reflect the covariance projected into the first two dimensions.
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Figure 7: Typical  result  when  running  the  algorithms  discussed  in  this  chapter  using 
1,000,000 Markov chain samples (a). The MC data are thinned by a factor 100 
and used to infer a Gaussian mixture by hierarchical clustering (b), Population 
Monte Carlo (c) and the variational-Bayes algorithm (d). The colored ellipses 
reflect the covariance projected into the first two dimensions.
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HC PMC VB

samples per 
Markov chain

K final P
[%]

ESS
[%]

K final P
[%]

ESS
[%]

K final P
[%]

ESS
[%]

¼ million
16.2
±4.1

56.5
±8.3

19.5
±10.3

12.7
±3.7

29.3
±9.2

4.69
±3.59

3.4
±0.6

63.6
±8.0

16.7
±11.6

½ million
15.0
±0

61.6
±3.4

32.7
±12.0

8.6
±2.1

68.1
±7.9

29.9
±13.5

4.0
±0.4

77.7
±2.9

40.2
±15.0

1 million
15.0
±0

62.2
±1.3

41.8
±9.0

5.6
±1.0

86.8
±2.1

63.6
±15.1

4.4
±0.5

85.1
±2.4

60.5
±14.6

1½ million
15.0
±0

61.7
±2.6

44.8
±8.9

5.3
±0.7

89.3
±3.5

71.1
±15.2

4.7
±0.5

87.4
±4.0

66.5
±16.5

Table 1: Final number of components ( K final ), perplexity ( P ) and Effective Sample Size 
(ESS) for the banana shaped target (figure  5) averaged over 100 runs. The 
number of samples stated in the first column is the length of each individual 
chain before thinning. The errors stated above are calculated as the square root 
of  the  sample  variance.  The  notation  a±b  does  NOT  imply  a  Gaussian 
distribution here.

5.2.4.2 Fat-tailed toy target

We also analyze a target function with nongaussian tails. Student's T mixture proposals 
are more suitable than Gaussian mixtures in such cases. The tail probability of Student's T 
distribution  can  be  adjusted  by  its  degrees  of  freedom parameter.  If  we  want  to  use 
Gaussian mixtures anyway, we have to cut the target function down to a compact support. 
Otherwise, the variance of the integral estimator is infinite. If for example the target density 
decays polynomially and the proposal density like a Gaussian, then the first integral in (74) 
does not converge. We only consider Gaussian mixture proposal densities because our 
variational-Bayes implementation for Student's T mixtures is not ready yet.
We benchmark the different algorithms on the multimodal toy target density

P(x)={sin( x1

2 )
10

(1+sin( x2

2 )
2

)∏
i=3

d

min ( 1
4,

1

xi
2 ) ∀ x i : −6<x i<6

0 else

. (88)

In this section. The density denoted in (88) is plotted in figure 8. The multimodal target is 
defined in all dimensions d≥2  but we only consider the twenty dimensional case.
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Figure 8: contour plot of the multimodal target (cf. formula (88))

The sampling results are summarized in table 2. Here, VB achieves the highest perplexity 
and ESS using the least number of components in all the examined cases. PMC always 
achieves the lowest perplexity and ESS. For ¼ million samples, PMC completely fails with 
perplexity below 5% and ESS even below 1%. With 1½ million samples, PMC is only 
about 6% behind VB's perplexity and ESS. It does not reduce the number of components 
so much though. The hierarchical clustering never prunes any of the initial 30 components.  
However, its perplexity and ESS are not too much worse than those of VB.
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Figure 9: Typical  result  when  running  the  algorithms  discussed  in  this  chapter  using 
1,500,000 Markov chain samples (a). The two modes have equal probability 
mass. The right mode looks more important because it is mapped out by more 
chains. The MC data are thinned by a factor 100 and used to infer a Gaussian  
mixture  by  hierarchical  clustering  (b),  Population  Monte  Carlo  (c)  and  the 
variational-Bayes  algorithm  (d).  The  colored  ellipses  reflect  the  covariance 
projected into the first two dimensions.
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HC PMC VB

K final P
[%]

ESS
[%]

K final P
[%]

ESS
[%]

K final P
[%]

ESS
[%]

¼ million
MC samples

30.0
±0

39.7
±4.0

17.3
±4.5

28.1
±4.5

4.41
±3.2

0.41
±0.58

2.25
±1.64

45.2
±6.5

23.9
±6.6

1 million
MC samples

30.0
±0

48.9
±5.1

29.0
±6.0

21.1
±7.8

31.2
±8.6

9.28
±7.70

2.05
±0.22

50.4
±4.9

32.3
±5.8

1½ million
MC samples

30.0
±0

51.4
±3.9

32.5
±5.0

9.64
±6.52

48.7
±7.3

28.0
±10.0

2.14
±0.35

52.0
±3.9

34.3
±4.9

Table 2: Final number of components ( K final ), perplexity ( P ) and Effective Sample Size 
(ESS) for the multimodal target (figure 8) averaged over 100 runs. The number 
of samples stated in the first column is the length of each individual chain before 
thinning.  The  errors  stated  above  are  calculated  as  the  square  root  of  the 
sample variance. The notation  a±b  does NOT imply a Gaussian distribution 
here.

5.2.4.3 Conclusion

In our application, we use the Markov chains in order to find an initial proposal density for 
importance sampling. We would like to keep the Markov chains as short as possible for the 
following reasons: First, MCMC is, in contrast to IS, a sequential algorithm such that profits  
from computing clusters are rather limited. Second, we do not know how to combine the 
Markov chain samples with the importance samples. As a consequence, we can either use 
MCMC samples only or IS samples only. Since we know that the Markov chain samples in 
general do not correctly reflect the relative weight between disconnected regions we prefer  
the importance samples.
PMC is the only algorithm without intrinsic convergence criterion. In the papers we know 
(cf.  [BC13],  [Cap+04],  [Cap+08],  [Kil+09]), PMC has always been used differently. These 
papers suggest to use a set of samples for only one proposal update and then draw new 
samples for the next iteration. In such an algorithm, the sample perplexity can be used as 
stopping criterion. We could use the cost function that is minimized by PMC as stopping 
criterion, just like HC and VB do.
If we stick to the original usage of PMC  [Bea12] [BC13], then more components in the 
mixture means that more samples (calls to the in general expensive target density) are 
needed in each further proposal update. The original motivation to search for alternatives 
to HC was that the number of components is a parameter the user must carefully tune. As  
we  can  see  in  the  examples,  the  hierarchical  clustering  does  not  prune  unnecessary 
components. It might be able to do so with an extension that checks the component weight 
after each update just like in VB and PMC. Only the variational-Bayes algorithm reduces 
the number of components for both - few and many samples. PMC reduces the number of  
components only if it is provided with enough samples.
A single HC update is computationally much cheaper than a VB or PMC update. A VB  
update  is  slightly  more  expensive  than  a  PMC  update  due  to  the  additional  prior.  
Comparing  wall-clock  times  would  be  unfair  because  in  pypmc (version  0.9),  VB  is 
implemented  in  cython  while  HC  is  implemented  in  plain  python.  PMC  is  partially 
implemented  in  python  and  partially  in  cython.  However,  the  following  hierarchy  of 
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computational  effort  should hold if  all  three algorithms were implemented in  the same 
programming language: HC is much less expensive than PMC is slightly less expensive 
than VB.
The algorithm to be considered “best” depends on the target distribution and the available 
computing resources. The important quantities we want to calculate are expectation values 
like  (72).  We can reduce the uncertainty of  the importance sampling estimates in two 
ways, an improved proposal (see chapter 4.2.2) and more samples (see equation (74)). In 
total, we want as accurate estimates as possible in a minimal amount of time. If the target  
density is easy to evaluate, then a less expensive but less accurate proposal adaptation 
(eg  HC)  and more  importance  samples  (more  target  evaluations)  may be  faster  than 
running PMC or VB at all.

5.3 Further proposal updates

When we have a proposal density from the Markov chains, we could in principle just use it 
for importance sampling without any further adaptation. However, further improvements in 
perplexity and effective sample size can be reached with additional data. When the target 
has multiple modes (like in the multimodal example), the component weights cannot be 
learned from the Markov chains. In which mode a chain ends up, rather depends on the 
size  of  the  mode's  support  and  the  chain's  initial  position  than  on  the  mode's  total  
probability  (cf  chapter  4.1).  Importance  samples  however  contain  the  globally  correct 
weighting information.
One should never use PMC to cluster the Markov chains and then VB for subsequent 
proposal  updates  or  vice  versa.  According  to  our  experience,  perplexity  and  effective 
sample size decrease when PMC and VB are mixed. The reason is that PMC and VB 
converge into different solutions. Consequently, it doesn't make sense to consider further 
adaptations regardless of the algorithm that produced the initial proposal. We compare the 
complete original algorithm (cf. figure 3) to our proposed enhancement (cf. figure 4). Both 
algorithms are reviewed in the following.

5.3.1 Original algorithm

In  the  original  algorithm,  the  first  proposal  is  generated  by  hierarchical  clustering  as 
described in chapter 5.2.1. The resulting mixture is then used as proposal for importance 
sampling. In total N IS=K⋅N c  importance samples are drawn from the first proposal, where 
the  user  has  to  define  the  number  of  samples  per  component  N c .  In  the  examples 
provided in this chapter we choose  N c=600 . The importance samples and the mixture 
density are then passed to PMC. After a single PMC update, the PMC output mixture is 
used to draw K⋅Nc  importance samples. These samples and the newly obtained mixture 
are passed back to PMC for an update. PMC and importance sampling are iterated for at  
most 25 times until the sample perplexity increases less than 5%,

( P t−P t−1)
P t−1

< 5% , (89)

where t  enumerates the proposal update steps. A component that gets less than twenty 
samples assigned in a PMC step is removed.
An exhaustive explanation is provided in  [Bea12], a detailed summary can be found in 
[BC13].
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5.3.2 Enhanced algorithm

In the new algorithm, we basically replace the hierarchical  clustering and PMC by the 
variational-Bayes algorithm. The first proposal is generated as described in chapter 5.2.3, 
the further updates are discussed below. The alternatives to HC described in chapter 5.2 
already yield a quite good proposal. As a consequence, further updates are degraded to  
optional improvements on not-too-hard problems.
The variational-Bayes algorithm (cf. chapter 3.2) updates the probability distribution of the 
parameters θ={π ,μ , Σ}  of a Gaussian mixture. The prior distribution of the parameters is 
parametrized by a set of hyperparameters  Θ0

t ={α0
t ,m0

t ,β0
t ,V0

t , ν0
t }  where  t  indexes the 

number of proposal updates; t=0  indicates the VB run with MCMC data. The variational 
posterior  takes  the  same  functional  form  but  with  updated  hyperparameters 
Θ

t
={α

t ,mt ,βt ,V t ,ν t
} . For subsequent proposal updates, we could forward the parameter 

distribution obtained in the previous step as informative prior; i.e. we could set

Θ0
t +1=Θt . (90)

We  do  NOT  follow  this  procedure  because  the  variational  posterior  is  an 
APPROXIMATION of  the  true  posterior.  Consequently,  equation  (90) introduces  an 
approximation every time it is applied. We therefore recommend to rather use the sample 
combination described in chapter 5.4 and plug the importance samples into VB altogether. 
The  procedure  we  follow  is  sketched  in  figure  10.  We  always  combine  all  available 
importance  samples  and  impose  the  informative  prior  obtained  from  MCMC  with  the 
following exception:
Special care has to be taken of α

t=0 , the hyperparameter that describes the component 
weights  inferred  from  the  Markov  chain  data.  If  the  target  has  multiple  disconnected 
regions, the Markov chains do not reproduce the correct component weights (cf. chapter  
4.1). Consequently, the probability distribution of the component weights inferred with the 
Markov  chain  data  is  incorrect.  We  account  for  this  additional  knowledge  by  setting 
α0 k

t≥1=10−5≠αk
t =0 ; i.e. we impose the same uninformative prior for the component weights 

as in the first VB run (cf. chapter 5.2.3).

Our choice of Θ0
t≥1

={α0
t≥1,m0

t≥1 ,β0
t≥1 ,V 0

t≥1 ,ν 0
t≥1

}  codes exactly the information we gain from 
the Markov chains: We have valid estimates for the component means μ  and covariances 
Σ  that are coded by m0

t≥1  and V0
t≥1 . Both of them rely on a finite number of samples that 

are coded into β0
t ≥1  and ν0

t≥1 . We know the guess of the component weights π  could be 
wrong. We therefore set α0

t≥1  such that it approximates “not watched yet”.
The  estimate  of  π  is  incorrect  only  if  the  Markov  chains  have  not  explored  the  full 
parameter space. Whenever the target distribution is unimodal and the chains are run long 
enough, the component-weight estimates coded by α

t =0  are reliable. If we can assure that 
all chains have mixed, for example because they are all assigned to the same group by 
the Gelman-Rubin R value (cf. chapter 5.2.1), the results would probably improve if we set 
α0

t ≥1
=α

t=0 . However, we stick to the setting α0k
t≥1

=10−5
≠αk

t=0  in any case throughout this 
thesis.
In contrast to PMC in the original algorithm, VB has access to the information extracted 
from the Markov chains by the informative prior. Nevertheless, our prior lacks informative 
component-weight estimates α0

t . Like in the original algorithm, the component weights are 
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exclusively derived from importance sampling. In the following, we discuss how to set the  
number of  importance samples  N IS

t  to  be drawn from each proposal.  The only  really 
critical behavior of the variational-Bayes algorithm is that important components may be 
removed if N IS

t  is too small. But that actually is a consequence of a desired feature: We 
want components that get few effective samples assigned to be removed. One should 
therefore choose  N IS

t =1≫K  to  ensure that  every component  has a chance to  survive. 

During later proposal updates, we include all earlier samples such that N IS
t

≫K  for t>1  is 

automatically fulfilled if  N IS
t =1≫K . As a side remark note that the number of samples is 

totally uncritical if the variational-Bayes algorithm is run with a full informative prior.

For the toy examples discussed in the next section, we run VB only once with N IS=6,000  
importance samples. This is motivated by the fact that we already have a pretty good 
proposal from the MCMC data. In fact, most often the old convergence criterion (89) would 
indicate convergence after the first VB run with importance samples. Like in the first VB 
run, we stop when the log-likelihood bound L (q)  changes less than 10−10  relative or less 
than  10−5  absolute or after a thousand steps. Components with less than one effective 
sample are pruned.

Figure 10: Sketch of the enhanced algorithm. The samples from multiple Markov chains 
are clustered by the variational-Bayes algorithm. The resulting proposal is used 
for Importance sampling. Optional further proposal updates use the variational 
posterior of the very first VB run as prior and all available importance samples 
as data. Authored by Frederik Beaujean; taken with the author's permission.
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5.3.3 Discussion

The original algorithm uses PMC exactly like it is suggested in the  literature ([Cap+04], 
[Cap+08],  [Kil+09]). In particular, each PMC update is performed with new samples. The 
original  algorithm therefore needs more target  evaluations than the enhanced version.  
However, generating the first proposal using VB is more expensive than HC. While the 
hierarchical clustering converges after O(10) steps, the first variational-Bayes run typically 
needs  O(500) steps. In addition, a VB step is more expensive than a HC step. For the 
price of lower perplexity and ESS and more components, the number of VB steps can be 
reduced by imposing looser convergence criteria (e.g. less than a relative change of 10−5  
or an absolute change of 10−3  in the log-likelihood bound). But even then, VB still needs 
O(100) steps to converge.
If  the first proposal is not too bad, further updates using VB converge in  O(10) steps. 
According to our experience, if the variational-Bayes algorithm needs much more than ten 
steps in further updates, then the Markov chains did not explore all of their modes. The 
computational effort concerning only further proposal updates (not considering calls to the 
target) is comparable to the old algorithm. PMC and importance sampling must be iterated 
O(10) times until convergence; i.e.  O(10) PMC update steps must be run. Nevertheless, 
the old algorithms needs much more samples and thus target evaluations.
For an easy to evaluate target density, many evaluations are not a problem. However, a  
single call to the target density we map out in chapter 6 takes a few seconds. Thus, our 
problem requires an algorithm with as few function evaluations as possible. Note that more 
samples (and consequently more target evaluations) is always a possibility to increase the 
effective number of  samples  N eff ≡ESS⋅N  even with  a bad (low ESS) proposal.  If  the 
target is much faster to evaluate than the proposal updates, it can be better to draw more 
importance samples from a less well adapted proposal.
To summarize, hierarchical clustering to obtain the first proposal  is in general  faster but 
worse  than  the  variational-Bayes  algorithm  (cf.  chapter  5.2).  Further  updates  have 
comparable computational  effort  concerning VB and PMC but  the old  algorithm needs 
much more target evaluations. ESS and perplexity of  the old algorithm are lower than 
those of the enhanced algorithm (cf. table  3). It depends on the time a target evaluation 
takes whether  the  old  or  the  new algorithm is  faster  to  produce the  desired  effective  
number of samples N eff ≡ESS⋅N .

Note that the time spent with importance sampling can be tuned against the time spent  
with proposal updates by minor modifications in both algorithms. We can run multiple PMC 
updates using the same set of importance samples, similar to what we suggest in chapter  
5.2.2. That reduces the number of target evaluations while it increases the number of PMC 
updates. We can soften the convergence criteria for the variational-Bayes algorithm. Then 
we get a proposal that produces samples with lower ESS and we need more importance 
samples to obtain the same number of effective samples. Cornuet et al. [Cor+12] propose 
a combination of importance samples from multiple proposal densities. Their combination 
allows to always run PMC using all available samples. That increases the time needed for 
a  single PMC update but  probably decreases the number of  PMC steps needed until  
convergence.  It  also  allows  to  include  all  samples  into  the  evidence  calculation  and 
histogram plots; i.e. it shortens the final run (cf. chapter  5.4). We review their method in 
chapter 5.4.
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PMC ( K g=5 ) PMC ( K g=15 ) VB

K final N IS

[ 103 ]
P

[%]
ESS
[%]

K final N IS

[ 103 ]
P

[%]
ESS
[%]

K final N IS

[ 103 ]
P

[%]
ESS
[%]

banana
5.0

±0.1
7.9

±1.6
63.2
±6.6

19
±12

14.9
±0.4

35.8
±6.8

81.8
±3.9

41
±17

4.5
±0.5

6
±0

86.8
±3.2

61.5
±18.9

multimodal - - - -
30
±0

43.0
±13.5

50.9
±0.8

30.3
±1.9

2.1
±0.3

6
±0

52.7
±2.0

34.9
±3.4

Table 3: Final number of components ( K final ), perplexity ( P ) and Effective Sample Size 
(ESS) averaged over 100 runs. N IS  denotes the number of drawn importance 
samples. For the first proposal, ten Markov chains are run for one million steps 
and thinned by a factor of 100. The errors stated above are calculated as the 
square  root  of  the  sample  variance.  The  notation  a±b  does  NOT imply  a 
Gaussian distribution here.

5.4 Final run

In the previous sections, we only discuss how to find and update a proposal density for  
importance  sampling.  In  this  chapter,  we  focus  on  the  final  output;  i.e.  importance-
weighted  samples  of  the  target  distribution.  The  most  natural  step  after  the  proposal 
density is “good enough” is of course to draw as many importance samples as necessary  
for the desired accuracy (cf.  chapter  4.2.1).  That is exactly what the original algorithm 
[Bea12] [BC13] suggests. However, it would be nice to recycle the samples drawn to learn 
the proposal. We cannot offer a method to include the Markov chain samples from the first  
step (cf. chapter 5.1). Nevertheless, Cornuet et al. [Cor+12] present a method to combine 
importance samples that are drawn from multiple proposal densities but weighted for the 
same target. We can thus combine all samples drawn during further proposal updates (cf. 
chapter  5.3)  with  as many more samples from the best  adapted proposal  as we like.  
Similar to  (73) (see  [Cor+12]), it can be proved that the combined importance-weighted 
samples {(xi

t ,ω̌ i
t)} ,

ω̌i
t
=P(x i

t
)(

1

∑
τ=0

T
N τ

∑
τ '=0

T
N τ ' qτ ' (xi

t
))

−1

, (91)

where  xi
t  denotes the  i th sample drawn from the  t th proposal density  q t ,  T  the total 

number of proposal densities, and N t  the total number of samples drawn from proposal 
q t , provide unbiased estimates of expectation values like (72).
For the results presented in chapter  6.3, we adapt the proposal two times such that we 
have samples from three different proposals in the end. Table 6 (chapter 6.4) shows that 
their combination has a higher perplexity and effective sample size and than the samples 
from each individual proposal.

47



6 Bayesian analysis of new physics in rare B 
decays

In this chapter, we analyze if there is evidence for physics beyond the standard model  
(SM)  in  rare  B-meson  decays  analogous  to  [BBD14].  Furthermore,  we  improve  the 
constraints  on  scalar,  pseudoscalar  and tensor  Wilson coefficients.  The outline  of  this 
chapter is as follows: We first describe the theory in chapter 6.1. Our analysis method is 
described in chapter  6.2. We state and discuss the posterior distribution of the Wilson 
coefficients and the Bayes factor between the models EFT  and SM  (see chapter 6.2) as 
results in chapter 6.3. Finally, we evaluate the performance of our new algorithm in chapter 
6.4.

6.1 Theory of rare B decays

Effective  field  theories  (EFTs)  allow  the  theoretical  treatment  of  high-energy  physics 
without knowing its exact structure. The EFT concept in a nutshell can be seen in figure 
11:  By  integrating  the  heavy  W-  and  Z-bosons  out  of  the  standard  model,  effective 
operators with effective couplings like C 9  and C 10  arise. The effective couplings capture all 
heavy particles that can run in the loop, including particles beyond the standard model if 
present. All heavy fields ( W± ,  Z0 , top quark, heavy beyond SM) are summarized in the 
Wilson  coefficients  whereas  the  low-energy  fields  (bottom and  lighter  quarks,  photon, 
gluon) remain active in the effective theory. A detailed introduction to the concept of EFT is  
provided in [Neu05] and [Bur98].

Figure 11: Example of leading-order contributions to b→ s ℓ̄ ℓ  transitions in (a) the standard 
model and (b) the effective field theory defined by (92)

We analyze transitions of a b-quark to an s-quark and a lepton-antilepton pair ℓ̄ ℓ  in a low-
energy effective theory. The  b→ s ℓ̄ ℓ  effective Hamiltonian reads (cf.  [Dyk12],  [CMM97], 
[BHP07])
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Heff =−
4GF

√2
V tbV ts

*
(C 1O1c+C2O2c+ ∑

i≠1⋅,2⋅

CiOi)

−
4GF

√2
V ubV us

*
(C1(O1c−O1u)+C 2(O2c−O2u))

+ ... + h.c.

(92)

with the operator basis

O1 c=[ s̄ μT a PL c] [ c̄ μT a PLb ] , O1 u=[ s̄ μT a PLu ][ ū μ T a PLb] ,

(93)

O2 c=[ s̄ μ PLc ][ c̄  μ PLb] , O2 u=[ s̄ μ PLu] [ū μ PLb ] ,

O3=[ s̄ μ PLb ]∑q
[q̄ μ q ] , O5=[ s̄ μ  ν ρ PLb]∑q

[ q̄ μ  ν  ρ q] ,

O4=[ s̄  μT a PLb ]∑q
[ q̄ μ T aq ] , O6=[ s̄ μ  ν ρT a PLb ]∑q

[ q̄ μ  ν ρT a q] ,

O7=
e

(4 π )2
mb [ s̄ σ

μ ν
PR b] Fμ ν , O9=

e2

(4 π )2
[ s̄ μ PL b][ ℓ̄  μℓ] ,

O8=
gs

(4 π )2
mb [ s̄ σ

μ ν T a PR b]Gμ ν
a , O10=

e2

(4 π )2
[ s̄ μ PLb ][ ℓ̄ μ  5 ℓ] ,

OS=
e2

(4 π )2
[ s̄ PR b ][ ℓ̄ ℓ ] , OP=

e2

(4 π )2
[ s̄ PR b ][ ℓ̄  5ℓ] ,

(94)

OT=
e2

(4 π )2
[ s̄ σμ ν b ][ ℓ̄σμ νℓ] , OT 5=

e2

( 4π )2
[ s̄ σμ ν b] [ ℓ̄σμ ν  5ℓ] ,

the Fermi constant GF , and the CKM matrix elements V ij , i∈{u , c ,t }, j∈{d , s , b} . We also 
consider  the  chirality-flipped operators  O7

' ,  O9
' ,  O10

' ,  OS
' ,  and  OP

'  where  the  left 
projector PL=(1−5)/2  is replaced by the right projector PR=(1+ 5)/2  and vice versa. We 
neglect electroweak penguin operators; i.e. operators including sums like

∑q
êq [q̄ Γq ] , (95)

where Γ  denotes a combination of Dirac matrices and êq  the quark charge.

This work is focused on constraining the scalar (C S , CS
'
) , pseudoscalar (CP , CP

'
) , tensorial 

(CT) , and pseudotensorial  (C T 5)  Wilson coefficients. Their corresponding operators (94) 
do not arise in an effective low-energy theory based on integrating heavy fields out of the  
standard model  [BHP07]. Consequently, nonzero values can only be generated by new 
physics.
Quarks can only be indirectly observed as hadrons. In experiments, we can only generate 
hadronic initial states and observe hadronic final states. We therefore have to consider 
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experimentally tractable decays of hadrons with  b-quark content. The simplest possible 
hadrons consist of a quark and an antiquark - the mesons. Instead of b→ s ℓ̄ ℓ  transitions 
at the quark level, we consider decays of mesons with bottom-quark content (B-mesons). 
To  be  precise,  we  consider  CP-averaged  observables  of  the  decays  B s→ℓ+ ℓ− , 
B±

→K±ℓ+ ℓ− , and B0
→K *0ℓ+ ℓ− . Our nomenclature of B- and K-mesons follows [PDG14].

Detailed theoretical calculations are not within the scope of this work, we just summarize 
the most important facts here. The calculation of hadronic decay amplitudes is a highly  
nontrivial task due to nonperturbative QCD. The decays  B →K (*)ℓ+ℓ−  require a different 
theoretical treatment in the high and the low q2  regime where different approximations are 
valid.  By  q2 ,  we denote  the  dilepton invariant  mass.  High  q2  is  associated  with  low 
hadronic recoil (momentum of the final K (*)

) and low q2  is associated with large hadronic 
recoil.  For  high  q2  (q2

≥14GeV 2
) ,  an  operator  product  expansion  [GP04] is  used  to 

calculate higher orders in perturbation theory. At low  q2  (1GeV 2
≤q2

≤6GeV 2
) ,  we use 

QCD factorization (QCDF)  as  described in  [BFS01].  At  leading order  both  procedures 
coincide with the so-called naïve factorization,

⟨K (*) ℓ̄ ℓ|[ s̄ Γ1b ][ ℓ̄ Γ2 ℓ]|B⟩=⟨ K (*)|[ s̄ Γ1 b]|B ⟩⟨ ℓ̄ ℓ|[ ℓ̄ Γ2ℓ ]|0⟩ , (96)

where  Γ1,2  denote combinations of Dirac matrices as they appear in the operators  (93) 
(94).  We disregard the intermediate region 6GeV 2

<q2
<14GeV 2  because it is plagued by 

large nonperturbative contributions from hadronic resonances (J/ and ')  [Wei+09]. The 
hadronic matrix elements  ⟨K (*)|[ s̄ Γ1 b]|B⟩  define the  B →K  form factors  f 0,+, T  [BHP07] 
and the B→K *  form factors V , A0,1,2,3 , T1,2,3  [BZ05]. At large recoil, the form factors can 
be  calculated  from light-cone  sum rules  [BB98].  At  low  recoil,  lattice  calculations  are 
available [HPQCD13] (see also Appendix C.1).
Loop  corrections  are  calculated  in  the  MS

________

 renormalization  scheme  at  the  scale 
μ=4.2GeV ≈mb ,  where  mb  denotes  the  MS

________

 b-quark  mass.  The  calculation  of 
observables is performed using the EOS flavor program [EOS]. For sampling the posterior, 
we use the pypmc (cf. Appendix B) implementation of the algorithm described in chapter 5. 
Since the considered experimental input consists of CP-averaged observables only, we 
assume no CP violation beyond the SM; i.e. real Wilson coefficients.
The theory provides a mapping from parameters (here the Wilson coefficients  C i

(,) ) to 
observables. In the following, we reference the theoretical calculations of the observables 
used in the next section. Furthermore, we motivate our choice of observables from the 
theoretical point  of  view. The overall  goal is to infer (constrain) the Wilson coefficients 
C 10

(,) , C S
(,) ,C P

(,), C T ,  and  C T 5  from  experimental  data  while  keeping  the  other  Wilson 
coefficients fixed at their standard model values. Roughly speaking, we want to invert the 
mapping provided by theory. We show how to do that using Bayes' formula in chapter 6.2.

EOS implements the  B s→ℓ+ ℓ−  branching ratio as calculated in  [Bob+01]. There are no 
(pseudo)tensor  contributions  to  B s→ℓ+ ℓ−  decay  amplitudes  but  the  (pseudo)scalar 
contributions  are  enhanced  compared  to  SM  contributions.  Because  of  the  vanishing 
vector-current matrix element,

⟨0|̄s  μb|B̄ s⟩=0 , (97)
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every Wilson coefficient can only appear together with its chirality-flipped counterpart as 
C i−C i

,.
The  B±

→K±ℓ+ ℓ−  normalized  angular  differential  decay  width  (cf.  equation  (1.2)  in 
[BHP07]),

1
Γ

d Γ

dcos θ
=

3
4

( 1−FH ) (1−cos
2
θ )+

1
2

FH +A FBcos θ , (98)

and the (binwise) integrated branching fraction

B=
1

Γtot
∫ dq2 dΓ

dq2 (99)

are calculated in  [BHP07] for large and in  [BHD13] for low recoil of the  K  meson. The 
operators specified in (94) enter the B±

→K±ℓ+ ℓ−  branching ratio B  at the same order as 
the SM contributions.  In  the forward-backward asymmetry  A FB  and the flat  term  FH , 
(pseudo)scalar  and  tensor  contributions  are  even  enhanced  by  a  factor  of  √q2

/mℓ  
(remember  that  we  only  consider  q2

≥1GeV 2  and  that  mℓ=μ≈0.1GeV ).  In  contrast  to 
B s→ℓ+ ℓ−  decays,  the  pseudovector-current  related  matrix  elements  of  B±

→K±ℓ+ ℓ−  
amplitudes vanish,

⟨K -|̄s  μ 5 b|B- ⟩=0 , (100)

and therefore the Wilson coefficients can only appear as C i+C i
, .  In order to constrain all 

Wilson  coefficients  simultaneously,  we  require  additional  observables  to  resolve 
degeneracies.  We  therefore  also  include  the  B0

→K *0ℓ+ ℓ−  branching  ratio  into  our 
analysis. The decay width of B0

→K *0ℓ+ ℓ−  is described in [BHD13] for low and in [BHP08] 
for large K*  recoil.

6.2 Methodology

Our primary goal is to map out the probability distribution of the Wilson coefficients  C  
given experimental data D  using Bayes' theorem (cf. chapter 2.2). Furthermore, we want 
to judge whether the data are in favor of new physics. We therefore compare two models,  
the model where we infer the Wilson coefficients from the data, and the model where we 
fix the Wilson coefficients to their standard model values (cf. Appendix  C.2). We denote 
these by EFT  and SM .
Being theorists, we are not interested in modeling a detector but rather want to rely on 
experimentalists' publications. The idea is that the experimentalists reduce their full data 
set consisting of events in their detectors to the likelihood P(D∣O) , where O  is a set of 
relevant  “observables”.  P(D∣O)  as  a  function  of  O  is  taken  from  experimentalists' 
publications.  Although  Bayesian  analyses  are  uncommon  in  experimental  physics,  we 
assume that their publications provide distributions that approximate

P(D∣O)=∫ d νex P(D∣O , νex )P(ν ex∣O) ; (101)
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i.e.  the  distribution  where  experimental  nuisance  parameters  νex  are  properly 
marginalized out.  We further assume that the likelihood  P(D∣O)  and the experimental 
nuisance parameters  νex  are independent7 of the model  M  and the theory parameters 
θ .  The theory defined in chapter  6.1 provides a model-dependent mapping from theory 
parameters θ={C , νth}  to observables O  such that the likelihood of θ  in the model M  
can be formulated as

P(D∣θ ,M)=P (D∣O (θ ,M)) . (102)

Take for example the angular distribution of the decay  B →K ℓ+ ℓ−  denoted in  (98). The 
measurable  distribution  is  completely  defined  by  the  observables  O={AFB ,F H}  that 
themselves can be calculated from the theory as A FB= AFB(θ ,M)  and FH=FH (θ , M) . We 
can split the calculation of P(D∣θ ,M)  into two parts, the probability of the data given the 
relevant observables  P(D∣O)  and the observable prediction from theory  O(θ ,M )  for a 
given model M  and its theory parameters θ . Given these, we can formulate

P(C ,νth∣D ,EFT) ∝
Bayes

P (D∣C , νth ,EFT ) P0(C , νth∣EFT)

= P(D∣O(C , νth ,EFT)) P0(C ,νth∣EFT )
(103)

and

P(νth∣D ,SM) ∝
Bayes

P (D∣νth ,SM) P0(νth∣SM)

= P(D∣O(νth ,SM))P0(ν th∣SM)
(104)

using Bayes' theorem (4) and (102).
We split the theory parameters into the Wilson coefficients we want to infer from the data8 
C ={C 10

(,) ,C S
(, ), C P

(,) , C T , C T 5}  and other parameters νth  (such as quark masses or the CKM 
matrix elements). A complete description of the so-called nuisance parameters νth  can be 
found in chapter 6.2.2.
Formula  (103) is  the  key  equation  of  our  method.  It  describes  how  to  calculate  the 
posterior  P(C ,νth∣D ,EFT)  (which is what we want to know) from the likelihood P(D∣O)  
as  a  function  of  observables  O ,  the  mapping  from  parameters  to  observables 
O(C ,ν th , EFT),  and  the  parameter  prior  P0(C ,νth∣EFT) .  Note  that  we  assume  the 
likelihood P(D∣O)  to depend on the underlying model M∈{EFT ,SM , ...}  only via the set 
of relevant observables  O . For the example of the  B →K ℓ+ ℓ−  angular distribution that 
means we only consider theories that predict an angular distribution as denoted in (98) but 
the observables O={AFB ,F H}  may differ between the different models.
The  main  tool  to  cope  with  the  posterior  P(C ,νth∣D , EFT)  are  importance-weighted 
samples (cf. chapter  4.2) drawn using the algorithm described in chapter  5. The model 

7 Note  that  this  is  an  assumption  we  have  to  make  but  it  is  not  always  entirely  true.  The  current 
B →K *ℓ+ ℓ− angular analysis by LHCb for example assumes that there are no (pseudo)scalar and tensor 

operators (cf. section 6.2.1); i.e. it does depend on the model M .
8 In principle, we would like to infer all Wilson coefficients but for practical reasons, we have to restrict our  

analysis.  For  example,  we  assume  all  Wilson  coefficients  to  be  real  because  we  only  consider 
measurements of CP-averaged observables.
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EFT  allows deviations of the Wilson coefficients from the standard model predictions. To 
judge whether the data are in favor of new physics, we use the importance samples to 
calculate the evidence

ZM=∫ dθ P (D∣O(θ ,M)) P0(θ∣M) , M∈{EFT ,SM}, θ={C , νth if M=EFT

νth if M=SM
(105)

and the Bayes factor (cf. chapter  2.2) between the models  EFT  (103) and  SM  (104). 
Furthermore, we can use the samples to draw marginal distributions of the posterior. The 
results are presented in chapter 6.3.
A  description  of  included  measurements  is  listed  in  chapter  6.2.1.  We  specify  the 
parameters  and  their  priors  in  chapter  6.2.2.  For  the  theory  calculation  O(θ ,M )  (cf. 
chapter 6.1), we use the EOS flavor program [EOS].

6.2.1 Experimental constraints

We consider the latest experimental results from LHCb, CDF, and CMS. Our main interest 
is in the new 2014 LHCb results of the angular B±

→K±
μ

+
μ

−  observables (cf. formula (98)) 
published in  [LHC14B]. The recent measurement provides an angular analysis to so far 
unrivaled  accuracy.  As  mentioned  in  the  previous  chapter,  the  B±

→K±
μ

+
μ

−  angular 
observables  are  very  sensitive  to  (pseudo)scalar  and  (pseudo)tensor  operators.  We 
include the integrated branching fractions,  A FB ,  and  FH  (all  CP-averaged) in the bins 
q2

∈[ 1.10,6.00 ] GeV 2  and q2
∈[ 15.00,22.00 ] GeV 2  as stated in [LHC14A] and [LHC14B] into 

our  likelihood.  We  further  include  the  (CP-averaged)  measurements  of  A FB  and  the 
integrated branching fraction in the bins  q2

∈[ 1.00,6.00 ] GeV 2 ,  q2
∈[ 14.18,16.00 ] GeV 2 , and 

q2∈[ 16.00,22.86 ] GeV 2  from [CDF12].
We also impose the combined CMS-LHCb  [Arc14] measurement of the total branching 
fraction for the (CP-averaged) decay B s→μ

+
μ

− .
Unfortunately, the angular analysis of  B0

→K * 0
μ

+
μ

−  decays carried out by LHCb [Cia14] 
assumes no contributions from the operators  (94) that  we are interested in.  The main 
reason for this is that they claim to have too few events to fix all parameters in their fit. We 
can  therefore  only  consistently  include the  integrated branching ratio  of  B0

→K *0
μ

+
μ

−  
decays. To be precise, we consider the measurements of the integrated and CP-averaged 
B0

→K *0
μ

+
μ

−  ( B̄0→ K̄* 0μ+μ−)  branching  ratio  in  the  bins  q2∈[ 1.00, 6.00 ] GeV 2 , 
q2

∈[ 14.18,16.00 ] GeV 2 , and  q2
∈[ 16.00,19.00 ] GeV 2  published in  [LHC13B],  [CMS13], and 

[CDF12]. Note that the last q2 -bin in [CDF12] is slightly wider q2∈[ 16.00,19.21 ] GeV 2 .
Note  that  there  are  indications  of  lepton-flavor-universality  violation  [LHC14C].  We 
therefore do not include BaBar [BaBar12A] [Babar12B] and Belle [Belle09] data because 
they average over the two lepton flavors ℓ=μ  and ℓ=e . Instead, we only include purely 
muonic  (ℓ=μ)  decays; i.e.  we fit  the muonic Wilson coefficients.  Further note that all 
included measurements provide only CP-averaged observables. Since we do not include 
observables sensitive to CP violation, we consider only real Wilson coefficients; i.e. we 
assume no CP violation beyond the Standard model.
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6.2.2 Parameters and priors

We denote the theory parameters  θ={C , νth}  as combination of the Wilson coefficients 
C ={C 10

(,) ,C S
(, ), C P

(,) , C T , C T 5}  and the nuisance parameters  νth .  Our nuisance parameters 
νth  are:  The CKM matrix  in  modified  Wolfenstein  parametrization,  the  charm and the 

bottom quark mass, the B →K  and B→K *  form factors in the parametrization presented 
in [KMPW10], the B s  decay constant f Bs

, and subleading corrections. Other “parameters” 
(eg.  the  Wilson  coefficients  C 1−9

(,) )  that  can  affect  the  relevant  observables  (cf. 
chapter 6.2.1) are considered as part of the model  M  (cf.  chapter  6.2) and kept fixed 
while we sample through the parameters θ . The reason to include nuisance parameters 
at all is uncertainty propagation. In order to account for theory uncertainties, we include 
them as nuisance parameters with an informative prior. The posterior distribution of the 
Wilson coefficients (where the nuisance parameters are marginalized out) then contains 
the correctly propagated uncertainty of the nuisance parameters.

We impose a factorizable prior,

P0({C ,ν th})=∏
i

P0(C i)∏
j

P0(ν j) , (106)

where we introduce the notation C ={C i}  and νth={ν j} . We specify the prior of the Wilson 
coefficients as

P0(Ci)={(2ai)
−1 if Ci∈[−ai ,+ai ]

0 else
where ai={

8 if Ci∈{C10 ,C10
,

}

2 if C i∈{CS
(,) ,CP

( ,) ,CT ,CT 5}

.(107)

The nuisance parameters are assigned informative priors based on the references listed in 
table 4. We interpret symmetric uncertainties denoted by θ=μ±σ  as Gaussian with given 
mean and variance P0(θ)=N (θ∣μ ,σ) . For asymmetric uncertainties θ=μ−σlower

+σupper ,  we adapt 
the log-gamma distribution (cf. Appendix  A.4) such that the mode matches  μ , the 68% 
interval matches [μ−σlower ,μ+σupper ] , and

P0(μ+σupper)=P0(μ−σlower) . (108)

Since  we  calculate  the  decay  amplitudes  as  truncated  infinite  series,  all  contributions 
higher  than a certain order are neglected.  We partially account  for this  uncertainty  by 
nuisance parameters that are added (or multiplied) to the most uncertain amplitudes. We 
impose a Gaussian with mean zero (one) and standard deviation based on power counting 
for each subleading correction (cf. table 4). This treatment is exactly the same as for the 
analysis discussed in  [BBD14] (see also  [BBDW12]). We discuss one of the subleading 
corrections in more detail here because its posterior shows large deviations from the prior.  
The quantity  T , defined in  [BHP07], is the QCDF result that accounts for contributions 
from O1−6  to the amplitude of B→K ℓ+ ℓ− . The QCDF framework is valid at large recoil up 
to corrections of order  Λ/mB≈Λ/mb . We replace  T →T +Λ/mB  where  Λ  is a nuisance 
parameter with Gaussian prior P0(Λ)=N (Λ∣0 ,0.5GeV )  restricted to the range [−1 ,1 ]  to 
account for this uncertainty.

54



We parametrize the q2 -dependence of the B →K  and B→K *  form factors as suggested 
in [KMPW10] (see also Appendix C.1). The parametrization of each form factor consists of 
its value at  q2

=0  and a slope parameter. Hence, each of the form factors  f 0,+, T ,  V ,  
A0,1,2,3 ,  and T1,2,3  introduces two nuisance parameters with the following exceptions: By 

kinematics, the B →K  form factors obey

f 0(0)=f +(0) . (109)

As a consequence, we only need five instead of six nuisance parameters for the  B →K  
form factors.  The  B→K *  form factors  are constrained by  the  exact  relations  (see for 
example [BZ05])

A3(q
2
)=

mB+mV

2mV

A1(q2
)−

mB − mV

2mV

A2(q
2
) (110)

and

A0(0)=A3(0) . (111)

Thus, the form factor A3  is redundant and does not give rise to any nuisance parameter. 
The form factor A0(q2)  only enters via suppressed terms. We therefore do not include the 
uncertainty of its parametrization denoted in [KMPW10]; i.e. we do not introduce nuisance 
parameters related to A0(q2) . The tensorial form factors T1,2,3  can be substituted for V  
and A0,1,2  up to corrections of order  1/mb  (see e.g.  [GP04] for low and [BF00] for large 
recoil). In total, we use 6 nuisance parameters to describe the B →K *  form factors V  and 
A1,2 .

There are three more constraints  on the form factors  that are not included in the prior 
explained above. Although A0(q2)  is fixed, we impose the constraint

A0(0)=0.29−0.07
+0.10 (112)

given in  table  4 of  [KMPW10].  This  constraint  should  only  change the  evidence by  a 
constant factor and is therefore irrelevant in the present analysis. However, if we decide to 
vary A0(q2)  in the future, it will not be forgotten. In addition, we constrain the ratio

V (0)

A1(0)
=1.33±0.40 (113)

as published in  [Ham+13]9.  To include the lattice results  [HPQCD13] calculated at low 
recoil for the B →K  form factors, we introduce the constraint described in Appendix C.1.

9 Note that the value slightly changes in version two of the paper. We only noticed the update after we 
finished our analysis and thus use the old value.
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nuisance parameter(s) reference

CKM matrix in modified Wolfenstein parametrization (4 parameters) [UTfit13]

charm and bottom quark mass (2 parameters) [PDG14]

f Bs
, the B s  decay constant; we use f Bs

=(227.6 ±5.0)MeV  as presented in 
November 2014 on http://www.latticeaverages.org/ (1 parameter)

[LWL10]

B →K  form factors (5 parameters) [KMPW10]

subleading B →K  amplitude corrections, see text (2 parameters)
[BBDW12]
[BBD14]

B→K *  form factors (6 parameters) [KMPW10]

subleading B→K *  amplitude corrections, see text (9 parameters)
[BBDW12]
[BBD14]

Table 4: List of the in total 29 theory nuisance parameters  νth . We assign informative 
priors to the nuisance parameters. The sources of information are referenced 
here.

The full prior is listed in the internal EOS report in Appendix C.3.

6.3 Results and discussion

In  this  section,  we  discuss  our  global  fit  of  the  Wilson  coefficients;  i.e.  the  posterior 
distributions denoted in equation (103). The marginal 68% and 95% credibility intervals are 
listed in table 5. Important marginal distributions of the posterior are shown in figures 12 
and  13.  The Wilson coefficients  that  are  not  plotted  against  each other  appear  to  be 
weakly correlated. Note that the plots shown in this section are smoothed as described in  
Appendix F of [Bea12].

68% 95%

C 10 [−3.6,−2.4 ]∪ [−1.6,1.2 ]∪[ 2.4 ,3.2 ] [−4.2,4.4 ]

C 10
, [−3.6 ,−2.1 ]∪[−1.6,1.2 ]∪ [2.5 ,2.9 ] [−4.5 ,4.1 ]

C S [−0.21 ,0.14 ] [−0.34 ,0.30 ]

C S
, [−0.21 ,0.14 ] [−0.34 ,0.34 ]

C P [−0.23 ,0.19 ] [−0.38 ,0.40 ]

C P
, [−0.21 ,0.19 ] [−0.38 ,0.38 ]

C T [−0.28 ,0.11 ] [−0.46 ,0.26 ]

C T 5 [−0.21 ,0.21 ] [−0.38 ,0.36 ]

Table 5: 68% and 95% credibility intervals of the marginalized one-dimensional posterior 
distributions  P(Ci∣D ,EFT) .  The  credibility  intervals  are  calculated  from  1D 
histograms. We start from the highest bin and subsequently include lower bins 
until the total probability mass of all included bins covers at least 68% or 95%.
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Figure 12: Marginal plots of posterior distribution P(C∣D) . The dark blue area depicts the 
68% credibility region, the light blue area depicts the 95% credibility region. 
The Wilson coefficients are renormalized at the scale  μ=4.2GeV ≈mb . The 
orange crosses denote the SM values of the Wilson coefficients.
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Figure 13: Marginal plots of posterior distribution P(C∣D) . The dark blue area depicts the 
68% credibility region, the light blue area depicts the 95% credibility region. The 
Wilson coefficients are renormalized at the scale μ=4.2GeV ≈mb . The orange 
crosses denote the SM values of the Wilson coefficients.
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With  the  new 2014  LHCb data,  we  put  tighter  model  independent  constraints  on  the  
(pseudo)scalar and tensor Wilson coefficients than previously available in the literature. 
Compared to [BHP07], we tighten the bounds up to one order of magnitude. Our bounds 
on C S , P

(,)  are comparable to [AGC14]. However, [AGC14] construct a model that constrains 
the Wilson coefficients as

C S=−CP , CS
,
=CP

, , CT=CT 5=0 . (114)

With  these  constraints,  it  is  possible  to  put  bounds  on  the  scalar  and  pseudoscalar 
coefficient using only the branching ratio  B (B s→ℓ+ ℓ−)  as experimental input. In order to 
confirm the results presented in [AGC14], we implement the relations (114) (available as 
model  “ConstrainedWilsonScan”  in  EOS)  and  run  a  preliminary  fit  for  ℓ=μ  and  the 
experimental  constraint  B (B s→μ

+
μ

−
)=2.8−0.6

+0.7
⋅10−9  [Arc14].  We  reproduce  the  plots  of 

[AGC14], indicating |CS ,P
(,)

|≾0.2  for both, the 68% and the 95% credibility interval. The 68% 
credibility intervals of our global fit agree well with |CS ,P

(,)
|≾0.2 . However, the 95% credibility 

interval  of  the global  fit  is  wider.  Note that  the branching ratio (see equation (4.15) in 
[Bob+01])

B (B s→ℓ+ ℓ−)∝|C S−CS
,
|

2
+|(CP−CP

,
)+

2ml

MB

(C10−C10
,

)|
2

(115)

has ( ml -suppressed) contributions from  C 10  and  C 10
, .  We expect models with variable 

(C 10−C10
,

)  to allow larger scalar and pseudoscalar contributions. For example a decrease 
in C 10  can be compensated by an increase in C S  or CP . Similar degeneracies appear in 
other relevant observables. When the other Wilson coefficients are fixed to their standard 
model values, significantly smaller bounds on  |CS ,P

(,)
|  are obtained  [AS12] [BKMS12]. In 

view of possible new physics in  C 7,9,10
(,)  (discussed in great detail in  [BBD14]), bounds in 

such models may be too strict.
The standard model values (cf. Appendix C.2) of all scanned Wilson coefficients but C 10  
are within the 68% credibility interval.  C 10

SM  is at the outer boundary of the 95% interval. 
This  tension  originates  mainly  from  the  precise  measurement  (and  therefore  tight 
constraint) of the branching ratio  B (B±

→K±
μ

+
μ

−
)  by LHCb [LHC14A]. However,  C 10

SM  is 
within the 68% interval in a preliminary fit where the log-gamma priors of the B →K  form 
factors are replaced by asymmetric Gaussians. In fact, the posteriors of the  B →K  form 
factor nuisance parameters f 0(0)=f +(0) ,  f T (0) ,  and bT  are pushed towards the thinner 
tail  of the log-gamma prior (cf.  figure  14). Note that the log-gamma distribution decays 
faster than a Gaussian on the side with the shorter tail. We interpret this as indication to 
parametrize the form factor uncertainties with a heavier short tail.
At  leading order,  all  b→ s ℓ̄ ℓ  amplitudes are sums where each term is  proportional  to 
exactly one Wilson coefficient. Consequently, all observables can be written as weighted 
sums  over  products  of  exactly  two  Wilson  coefficients.  This  fact  gives  rise  to  the 
approximate symmetry C i→−Ci .  (C 10+C 10

,
)  is well constrained by the angular distribution 

of  B →K ℓ+ ℓ−  but  (C 10−C 10
,

)  interferes  with  the  scalars  and  pseudoscalars  in  the 
branching ratio of B s→ℓ+ ℓ−  (115). That gives rise to the two disconnected regions in the 
C 10−C 10

,
− plane (cf. figure 12).

The isolated blob near  (0.2 ,0.4 )  dark blue blob in the  C S−C S
,
− plot (cf. figure  12) is a 

sampling artifact.
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Figure 14: The  nuisance  parameters  describing  the  B →K  form  factors  are  pushed 
towards the  thinner  tail  of  the log-gamma prior.  This  effect  is  most  clearly 
visible in  f T (0) .  The dashed line shows the prior,  the solid line shows the 
posterior.  The  dark  and  light  blue  regions  indicate  the  68% and  the  95% 
credibility interval, respectively.

Unlike in the analogous C 7 ,9 , 10
(,) -fits [BBD14], the subleading B →K *  parameters exhibit no 

recognizable deviation from the prior,  probably because we only include the branching 
ratio B (B0

→K *0
μ

+
μ

−
)  instead of the full angular distribution (cf. chapter 6.2.1). However, 

the nuisance parameter Λ  that parametrizes the unknown 1/mb  corrections to the B →K  
form-factor relations at large recoil (cf. chapter  6.2.2) is pulled towards negative values 
(figure 15). Its posterior is centered at -0.5. Λ=0 , corresponding to negligible subleading 
corrections, is at the boundary of the 95% posterior credibility interval. In the model with 
SM-valued  Wilson  coefficients  (model  SM ),  Λ=0  is  even  outside  the  99.7%  (3σ)  
interval.
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Figure 15: Subleading contributions to the 1/mb  expansion of the amplitude B →K ℓ+ ℓ− , 
see section  6.2.2. The dashed line shows the prior, the solid line shows the 
posterior.  The  dark  and  light  blue  regions  indicate  the  68% and  the  95% 
credibility intervals.

With the findings above, we conclude that a better understanding of the form factors is  
needed.  In  particular,  we  see  indications  for  sizable  contributions  beyond  the  well 
established QCDF at large recoil. This is further discussed by Jäger and Camalich [JC14]. 
To  summarize,  more  precise theory  calculations  are  needed  in  order  to  distinguish 
between theory uncertainties and new physics [BBD14] [JC14].

The two evidences ZEFT  and ZSM  are:

ZSM =(4.40±0.02 )⋅10114 , ZEFT=(4.76±0.05 )⋅10108 , (116)

resulting in a Bayes factor of

ZSM /ZEFT≈9.24⋅105 . (117)

Note that the evidence ZEFT  depends on the prior range described by the parameters ai  
in equation  (107). Each of the priors  P0(Ci)  contributes with a factor of  (2ai)

−1  to the 
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evidence. In the following, we investigate the sensitivity of  ZEFT  to the prior ranges. We 
define the model EFT '  just like the model EFT  but with a tightened prior

P0
,
(Ci)={(2ai

,
)
−1 if Ci∈[−ai

,
,+a i

,
]

0 else
where a i

,
={

4 if C i∈{C 10 ,C 10
,

}

0.3 if C i∈{CS
(,) ,CP

( ,) ,CT ,CT 5}
(118)

for  the  Wilson  coefficients.  The  smaller  ranges  are  chosen  such  that  they  cover  the 
corresponding 1D 68% credibility intervals and part of the 1D 95% intervals; i.e. we choose 
the prior ranges such that they only cover important regions. The idea is to ensure that the  
model  EFT '  is not rejected because of too large a parameter volume. We can estimate 
the evidence ZEFT '  by

ZEFT '=∫ dθ P(D∣O(θ), EFT ')P0(θ ,EFT ')

=∫dθ 1EFT ' (θ)P (D∣O(θ) ,EFT)P0(θ ,EFT)
P0(θ ,EFT ' )

P0(θ ,EFT )

≤∫dθ P(D∣O(θ) ,EFT) P0(θ ,EFT)
P0(θ ,EFT ')

P0(θ ,EFT)

=ZEFT

P0(θ ,EFT ' )

P0(θ ,EFT)
≈1.67⋅10114 ,

(119)

where 1EFT '  denotes the indicator function of the allowed parameter values in the model  
EFT ' .  The  prior  ratio  P0(θ ,EFT ' )/P0(θ ,EFT)  reduces  to  ∏Ci

P0
'
(Ci)/ P0(C i)=(8 /4)

2

⋅(2/0.3)
6
≈350,000  since  the  prior  over  the  nuisance  parameters  is  unchanged.  The 

numerical values are read off from (107) and (118). Since even with the tighter priors the 
Bayes factor is less than one (to be precise  ≤0.38 ), we conclude that the data do not 
favor the new-physics model. However, if we impose a strong enough prior in favor of new 
physics, the posterior odds might still favor the model with new physics. As motivated in 
the introduction, there undoubtedly are phenomena that cannot be explained by the SM 
and we therefore should find deviations from the SM at some point.
The observables of rare B  meson decays seem to be well described by the models EFT  
and SM . In both models, all pull values (see chapter 7.3 in [Bea12]) are below 2σ .

6.4 Sampling performance

In this section, we evaluate the new algorithm that we present in chapter 5. All statements 
in this section refer to the algorithm's performance to sample from the posterior distribution 
P(C ,νth∣D ,EFT)  unless stated otherwise.

The  Markov  chain  prerun  (cf.  chapter  5.1)  is  performed with  the  following  parameter 
settings: We run 10 Markov chains, each for 103,000 steps. We discard the first 3,000 
samples  immediately  after  creation  as  part  of  the  burn-in.  In  particular,  these  3,000 
samples do not enter the first self-adaptation. For the remaining 105  samples, we run the 
self-adaptation after every 5,000th sample. Another 10,000 of these samples are deleted as 
burn-in. We use a Gaussian proposal with an initially diagonal covariance matrix. We do 
not  use the initialization suggested in  equation  (3.22)  of  [Bea12].  Instead,  we set  the 
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proposal variance to 0.01 for the Wilson coefficients. For the nuisance parameters that  
have an informative prior, we set 10−4

⋅1 /2⋅( σupper+σ lower )  where σupper  and σlower  denote the 
upper and lower uncertainties of the prior. That setting is actually an unnoticed bug. The 
initial  proposal  variance  suggested  in  equation  (3.22)  of  [Bea12] would  be 
(1/2⋅( σupper+σlower ))

2
; i.e. we accidentally miss the square. The prefactor  10−4  is needed 

with the faulty initialization because otherwise the proposal  is so wide that only points 
outside the important regions are proposed. Despite of this bug, the self-adaptive Markov 
chains  produce  reliable  samples.  This  indicates  that  MCMC  is  robust  against  poor 
parameter settings.
For  comparison,  we  run  hierarchical  clustering  and  the  variational-Bayes  algorithm to 
obtain a first proposal for importance sampling (cf. chapter 5.2). We thin the MC samples 
that we plug into VB by a factor of 50. The chain grouping by R value results in two groups 
-  the two stripes that  are nicely  visible  in the upper  left  plot  of  figure  12.  Hierarchical 
clustering  achieves  P =0.225%  and  ESS=0.065%  (estimated  from 100,800  samples) 
while  VB yields  a ten-times higher  perplexity  and doubles  the  ESS (cf.  table  6).  The 
parameter settings are Kg=50  for HC and Kg=10  for VB. We do not try other values of 

Kg  but in particular the old algorithm is very sensitive to that parameter. In fact, none of  
the 100 initial output components for HC is pruned during the HC run. In contrast, the 
number of components is reduced from 20 to 12 by VB. We run three further proposal 
updates (cf. chapter 5.3) but with the variational-Bayes algorithm only. For each proposal 
update with VB, we combine all samples from earlier proposals as described in [Cor+12] 
(see also chapter 5.4) and impose the VB posterior of the MCMC data as informative prior. 
Since there obviously are two disconnected regions (figure 12, upper left plot), we set the 
VB  hyperparameters  α0k  to  the  “uninformative”  value  10−5  (see  chapter  5.3.2 for  a 
discussion of the hyperparameter settings). Empirical perplexity and effective sample size 
of the remaining proposals are listed in table 6. The variational-Bayes algorithm reduces 
the  number  of  components  to  4  during  the  first  further  proposal  update.  In  the  two 
remaining updates, the number of components does not change any more.

P  
[%]

ESS 
[%]

number of samples

first proposal 2.32 0.13 302,400

second proposal 2.30 0.22 201,600

third proposal 4.89 0.51 453,600

combination 6.11 1.17 957,600

Table 6: Perplexity ( P ) and Effective Sample Size (ESS) of the samples used for the 
plots and for calculating the Bayes factor in chapter 6.3.

The  plots  in  this  chapter  are  drawn  with  the  combined  importance-weighted  samples 
(957,600 samples in total). The combined weights are free of severe outliers such that  
cropping  (see  chapter  4.3.3.1  in  [Bea12])  becomes  unnecessary.  This  is  a  major 
improvement  as  outliers  are  a  major  difficulty  in  the  importance-sampling  approach. 
Nevertheless,  when  only  regarding  the  samples  from  a  single  proposal  (without 
combination à la Cornuet et al. [Cor+12]) outliers still occur. We can see the reduction of 
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outliers in the effective samples sizes: The last individual proposal alone achieves the 
highest ESS=0.51% , whereas the ESS of the combination is more than twice as large (cf. 
table 6).
However,  the  effective  number  of  samples  N eff ≡ESS⋅N ,  where  N  denotes  the  total 
number of importance samples, is the important quantity that determines the accuracy of 
integral estimates and the quality of plots. As can be seen in (75), a worse proposal can 
always (at least in theory) be compensated by more samples. In total, we gain roughly 
N eff =11,000  effective samples for approximately two million calls to the posterior (one 

million MCMC samples plus one million importance samples).
Note that the old algorithm needs many more function evaluations. In table 7.4 of [Bea12], 
we see that PMC must be run at least ten times until convergence on 18 to 31 dimensional 
similar problems. With O(50)  components and N c≥3,000  (cf. table 7.4 in [Bea12]), more 
than  10⋅50⋅3,000=1.5⋅106  importance samples are drawn but not merged into the final 
output.  Another  one  to  five  million  samples  are  drawn  during  MCMC.  Thus,  the  old 
algorithm needs more than 2.5 million calls to the target before the first sample that enters 
the final output can be drawn. The output only consists of the additionally drawn final two  
million importance samples.
The effective sample sizes reached after typically much more than two million calls to the 
target vary between 6% and 45% (table 7.4 in [Bea12]). In contrast, the proposal for our 29 
dimensional fit of only the nuisance parameters (model SM ) already reaches an ESS of 
48% using just the about one million samples from MCMC.
Note that all distributions considered in table 7.4 of  [Bea12] are at most 31 dimensional. 
Due to the curse of dimensionality, our 37 dimensional distribution  P(C ,νth∣D ,EFT)  can 
less well be approximated by a Gaussian mixture which results in a lower ESS. We expect 
that the old algorithm would, just  like our enhanced version, only yield an ESS at the 
percent level. However, the old algorithm would need millions of samples to generate the 
proposal. Furthermore, the old algorithm would discard the millions of learning samples 
and need another final sampling run.
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7 Conclusion
We tighten earlier data-driven constraints on the scalar, pseudoscalar, and tensor Wilson 
coefficients in an effective  b→ s  theory. The angular observables  of  B →K ℓ+ ℓ− and the 
branching fraction of  B s→ℓ+ ℓ−  are particularly sensitive to these coefficients since the 
vectorial couplings of the SM are helicity suppressed. We are, to our knowledge, the first 
to constrain all  of  C 10

(,) , C S
(,) ,C P

(,), C T ,  and  C T 5  simultaneously in a global fit.  We extend 
previous work  [AGC14] [AS12] [BKMS12] where more restricted models and, except for 
[AGC14], older data are considered. In contrast, we consider all Wilson coefficients as a-
priori independent. As a consequence, we need more observables in order to constrain the 
additional degrees of freedom and thus exploit the latest measurements.
Moreover, we account for theory uncertainties, in particular the not-well-known  hadronic 
form factors, in an atypically sophisticated way. This is naturally achieved in the Bayesian 
approach  by  the  introduction  of  nuisance  parameters.  To  better  constrain  the 
(pseudo)scalar  and  tensor  Wilson  coefficients,  it  would  be  desirable  to  have  B →K *  
angular analyses that do not assume these coefficients to vanish.
We argue that the current theoretical approach needs a refinement to distinguish between 
new physics and theory uncertainties. In particular, we see indications of sizable  1/mb  
corrections to the well established QCDF approach. Furthermore, the exclusion of C 10

SM  at 
2σ  only arises when log-gamma distributions instead of asymmetric Gaussians are used 
to parametrize the B →K  form-factor prior. We conclude that the shorter tails of the log-
gamma distributions decay too fast and hence introduce that unexpected deviation.
We further point out that the bounds on C S , P

(,) , C T ,  and C T 5  are less strict in models with 
variable C 10

(,)  compared to models that fix C 10
(,)

=C 10
(,)SM . We expect even looser bounds in 

models that additionally allow non-SM values for C 7
(,)  and C 9

(,) .
The inferred (pseudo)scalar  and tensor Wilson coefficients agree well  (within the 68% 
credibility  interval)  with  the  standard  model  prediction.  The  Bayes  factors  favor  the 
standard model SM  over generic new-physics models EFT ( ' ) .

To run the global fit at all, we have to develop an algorithm that can sample and integrate a 
multimodal and 37 dimensional nonnegative function. We present an enhanced version of 
the algorithm suggested in [Bea12] [BC13]. We find that the combination of Markov chains, 
the  variational-Bayes  algorithm,  and  importance  sampling  can  efficiently  sample  and 
integrate  O(40)  dimensional  and multimodal  functions even when only  little  analytical 
knowledge is available.
We show two possibilities to improve the proposal  density generated from the Markov 
chain samples compared to  [Bea12] [BC13]: First,  using VB instead of the hierarchical 
clustering results in an algorithm that reliably reduces unnecessary components. On the 
contrary, the number of components has to be carefully tuned in the old algorithm and its  
automatic determination is considered as an open question in  [Bea12]. Second, running 
multiple PMC updates with a very large number of Markov chain samples can result in a  
better proposal than obtained with VB. Nevertheless, we recommend to rather use VB 
because it is more robust against too few MCMC samples. In addition, the variational-
Bayes algorithm comes with an advantage for further proposal updates: It is possible to 
include  the  information  acquired  from  the  Markov  chains.  In  contrast  to  PMC,  the 
variational-Bayes  algorithm  takes  a  prior  distribution  into  account.  We  can  therefore 
consistently provide VB with an informative prior that summarizes exactly the information 
gained from MCMC.
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With our improved post  processing of the Markov chain samples,  the further  proposal 
updates become less important. However, we still achieve an increase in ESS by a factor  
of five after two further proposal updates in the global fit.
We gain another factor of two in ESS when we merge the samples of all  intermediate 
proposals  as  suggested  in  [Cor+12].  In  addition,  the  combination  of  samples  brings 
several more benefits: First, it significantly reduces outliers. In fact, we do not need to crop 
any outliers, which is a major advantage over the algorithm considered in [Bea12] [BC13]. 
Second, the samples drawn for further proposal  updates can be merged into the final  
output. Without the ability to combine samples, these would have to be discarded like in 
the original algorithm. Third, the combination stabilizes further proposal updates since all  
previously drawn importance samples are directly included, not only the latest ones.
We  expect  that  our  current  approach  works,  for  real-life  problems,  in  up  to  O(40)  
dimensions;  i.e.  we  believe  that  we  already  drive  our  algorithm to  its  maximum.  Our 
approach is based on approximating the target function and it is known that an error of ϵ  
in each dimension enters the importance weights as (1+ϵ)

d . Nonetheless, in the regime of 
≾40  dimensions, we provide a generic algorithm to sample and integrate an in principle 
arbitrary function. In particular, we provide an algorithm that can cope with multimodality in 
high dimensions. It shall be emphasized that there is no standard integration or sampling 
algorithm for high-dimensional and multimodal target functions yet.
We apply the variational-Bayes approach with Gaussian mixtures so far. If we revive the 
cropping and replace the Gaussians by Student's T distributions, up to O(50)  dimensional 
problems should become tractable. The hope with Student's T distribution is that outliers 
are reduced by the heavier tails, also for low-dimensional targets that decay slower than a 
Gaussian. We therefore develop an extension to existing variational-Bayes approaches 
with Student's  T mixture densities.  We are,  to our knowledge, the first  to discuss that  
method with the full conjugate prior for the degree-of-freedom parameter. We derive the 
update equations up to integrals over the degree-of-freedom prior. These 1D integrals can, 
taking care of several pitfalls, be computed numerically; i.e. we provide an implementation-
ready description. The conjugate prior that naturally arises does not belong to any well  
known class of probability distributions. We further show that the conjugate dof-prior is not 
unique.  The  development  of  analytic  expressions  for  the  yet  unsolved  integrals  is 
postponed to future work.
Besides the algorithm best suited to our problem, we discuss alternatives for other kinds of 
problems. In chapter 5.2.4.1, we show that our modified usage of PMC (cf. chapter 5.2.2) 
can achieve higher ESS than HC or VB but only if enough Markov chain samples are 
provided.  Since  for  us  “enough”  would  mean  “way  too  many”,  we  do  not  follow  that 
approach. However, if it is fast to evaluate the target distribution or if the effective number 
of  samples  N eff ≡ESS⋅N  is  considered less important  than the ESS, PMC can be the 
better  choice  over  VB.  In  case  of  a  low-dimensional  and  very-fast-to-evaluate  target 
distribution, meaning that PMC or VB updates take much longer than calls to the target, it 
might be sensible to stay with the hierarchical clustering.
We  provide  an  open  source  implementation  of  the  aforementioned  algorithms  in  the 
python package pypmc (cf. Appendix B).

66



Appendix

A Probability Distributions
In this section, we define the probability distributions used throughout this work. In this 
chapter we consistently denote the dimensionality with  d .  Bold Symbols are used for 
vector  or  matrix  variables  whereas  normal  printed  symbols  denote  real  numbered 
variables.

A.1 Gauss / Normal

In physics, the univariate Normal distribution is widely used to approximate uncertainties. 
Whenever a physicist writes a=b±c  it is implied that the variable a  has been measured 
to take the value b  with an uncertainty  c . Translated into the Bayesian framework that 
means a  is a random variable distributed according to the univariate Normal distribution 
N (a∣b , c) . The Normal distribution also arises as limiting distribution in the central limit  
theorem.
The two names “Normal” and “Gaussian” distribution are commonly considered equivalent.
The parameters of  a  Gaussian are the mean value  μ∈ℝ

d  and the covariance matrix 

Σ∈ℝ
d×d , positivedefinite  where d  denotes the dimensionality. The support is x∈ℝ

d .

PDF: N ( x∣μ , Σ)≡(2π )
−

d
2|Σ|

−
1
2 exp(−1

2
(x−μ)

T
Σ

−1
(x−μ)) (120)

mode: x=μ (121)

mean: E[ x]=μ (122)

cov.: cov [ x]=Σ (123)

The univariate normal distribution (d=1 )  is usually parametrized in terms of the standard 
deviation σ≡√Σ ∈ℝ

+  instead of the covariance. In order to avoid confusion, we clarify that 
we mean

N ( x∣μ ,σ)≡
1

√2π σ
e

−
(x−μ )

2

2σ
2

(124)

whenever we talk about the univariate Normal distribution.

A.2 Student's T

Student's T distribution is similar to the Normal distribution but has heavier tails. The tail  
probability mass is adjusted by an additional parameter compared to the Gaussian; the 
degrees of freedom ν>0 . Like the Gaussian, Student's T distribution takes the parameters 
μ∈ℝ

d  and  Σ∈ℝd×d , positive definite . Note that  Σ  is NOT the covariance matrix in this 
case (128).
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PDF: T (x∣μ ,Σ , ν)≡
Γ [(ν+d )/2 ]

Γ [ ν/2 ]
ν

−
d
2 π

−
d
2|Σ|

−
1
2 [1+

1

ν
( x−μ )

T
Σ

−1 (x−μ )]
−(ν+d )/2

(125)

mode: x=μ (126)

mean: E[ x]=μ  for ν>1 , otherwise undefined (127)

cov.: cov [ x]= ν
ν−2

Σ  for ν>2 , otherwise undefined (128)

Gaussian  and Student's  T distributions  are  transformable  into  each other.  Student's  T 
distribution can be written as a weighted integral over Gaussians (129) (see also chapter 
3.3). In the limit ν→∞ , Student's T distribution becomes a Gaussian distribution (130).

T ( x∣μ ,Σ , τ )=∫0

∞

N ( x∣μ ,
1
u

Σ)G (u∣τ
2

, τ
2 )du (129)

lim
ν→ ∞

T (x∣μ ,Σ ,ν)=N (x∣μ , Σ) (130)

Hereby G  denotes the Gamma distribution (cf. Appendix A.3).

A.3 Gamma

The Gamma distribution is the equivalent of a univariate Wishart distribution (cf. Appendix 
A.7). It takes two positive real valued parameters a>0  and b>0 . The support is σ>0 .

PDF: G (σ∣a ,b)≡
1

Γ(a)
b

a
σ

a−1
e

−bσ
(131)

Γ( t)≡∫0

∞

x t−1e−x dx

mode: σ=
(a−1 )

b
 for a≥1  otherwise undefined (132)

mean: E[σ ]=
a
b

(133)

var.: var [σ]=
a

b2 (134)

E[ ln σ ]=ψ(a)− ln b (135)

where ψ  denotes the digamma function

ψ(t)≡
d
dx

ln Γ(t) , Γ( t)≡∫0

∞

x
t−1

e
−x

dx . (136)

A.4 Log-gamma

We use the log-gamma distribution to approximate physical quantities that are provided 
with  an asymmetric uncertainty  (e.g.  a=b− d

+ c ).  A detailed discussion of the log-gamma 
distribution is provided in [Cro10].
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PDF: LogGamma ( x∣ν ,λ ,α )≡
1

Γ(α)|λ|
exp {α ( x−ν

λ )−exp( x−ν

λ )} (137)

x , ν ,λ ∈ℝ , α>0

mode: x=ν−λ lnα (138)

mean: E[ x ]=ν+λ ψ(α) (139)

var.: var [x ]=λ
2
ψ1(α) (140)

where ψ≡ψ0  denotes the digamma function (136) and ψn ,

ψn(t)≡
dn+1

dt n+1 ln Γ(t) , Γ( t)≡∫0

∞

xt−1e−x dx , (141)

denotes the polygamma function.

A.5 Dirichlet

The Dirichlet distribution arises as conjugate prior for the component weights in Gaussian  
or  Student's  T mixture  models  (cf.  chapters  3.2 and  3.3).  The  parameter  αk  can be 
interpreted as the number of observed samples from component k . One may expect the 
component weights to be the self-normalized vector α  which is exactly the mean (144). 
With more observations the uncertainty on the component weights decreases (145).

PDF: Dir (π∣α )≡C (α)∏
k=1

K

πk
αk−1 (142)

C(α)≡Γ(∑
k=1

K

αk)/∏
k=1

K

Γ ( αk )

π∈ℝK , 0≤πk≤1, ∑
k=1

K

πk=1 , α∈ℝK ,αk>0

mode: πk=(αk−1 ) /(∑
k '=1

K

αk'−K )  for αk>1  otherwise undefined (143)

mean: E[π ]=α/∑
k=1

K

αk (144)

var.: var [πk ]=

αk (∑
k'=1

K

αk '−αk)
(∑

k '=1

K

αk ' )
2

(∑
k '=1

K

αk '+1)
(145)
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A.6 Wishart

The Wishart distribution is the multivariate generalization of the Gamma distribution (cf. 
Appendix A.3).

PDF: W (Σ−1∣S−1 ,ν)≡2
−

νd
2 Γd (ν/2 )|S|

− ν
2|Σ|

−
ν−d−1

2 e
−

1
2

tr ( S−1
Σ) (146)

Σ
−1, S−1

∈ℝ
d×dpos. definite , ν>d−1

Γd(t)≡π
d (d−1 )

4 ∏
i=1

d

Γ(t +(1−i)/2)

Γ( t)≡∫0

∞

x t−1e−x dx

mode: Σ
−1

=(ν−d−1 ) S−1  for ν>d+1  otherwise undefined

Note that we parametrize it in terms of inverse matrices Σ
−1  and S−1  here because these 

parameters have the interpretation of inverted covariance matrices. Inverted covariance 
matrices are also called “precision matrices”. If  Σ

−1  is distributed according to a Wishart 
distribution, then Σ  is distributed according to an inverse Wishart distribution:

W −1
(Σ∣S ,ν)≡2

−
νd
2 Γd (ν/2 )|S|

ν
2|Σ|

−
ν+d+1

2 e
−

1
2

tr ( S Σ
−1 ) . (147)

A.7 Normal-Wishart

The Normal-Wishart  distribution  is  the  product  of  a  Normal  and a Wishart  distribution 
(148).  The  Normal  distribution  is  defined  in  Appendix  A.1,  the  Wishart  distribution  is 
defined in Appendix A.6.

PDF: NW (μ , Σ
−1

∣m ,β ,S−1 ,ν)≡N (μ∣m ,β−1
Σ)W (Σ

−1
∣S−1 ,ν) (148)

μ ,m∈ℝ
d , Σ

−1,S−1
∈ℝ

d×d pos. definite , β>0 , ν>d−1

mode: (μ ,Σ
−1 )=(m ,

1
ν−d

S
−1)  for ν>d  otherwise undefined (149)

70



B The python package pypmc
pypmc explains itself like this:

pypmc is  a  python  package  focusing  on  adaptive  importance 
sampling. It can be used for integration and sampling from a user-
defined target  density.  A typical  application  is  Bayesian  inference, 
where one wants to sample from the posterior to marginalize over 
parameters and to compute the evidence. The key idea is to create a 
good proposal density by adapting a mixture of Gaussian or student's 
t components to the target density. The package is able to efficiently 
integrate multimodal functions in up to about 30-40 dimensions at the 
level of 1% accuracy or less. For many problems, this is achieved 
without requiring any manual input from the user about details of the 
function.

We  originally  developed  pypmc to  test  and  compare  the  different  proposal  updating 
algorithms presented in chapter  5 during the preparation of this thesis.  Releases can be 
downloaded from the python package index  https://pypi.python.org/pypi/pypmc. The full 
development  history  is  available  on  github  https://github.com/fredRos/pypmc.  Detailed 
installation  instructions  can  be  found  in  the  full  documentation  available  online  at 
http://pythonhosted.org/pypmc. The documentation also contains examples that illustrate 
the usage of the most important functions and classes. In addition, all public methods are  
documented in the reference guide.
pypmc implements  self-adaptative  Markov  chains  (cf.  chapter  4.1)  and  importance 
sampling (cf. chapter 4.2.1) along with the clustering algorithms hierarchical clustering (cf. 
chapter  5.2.1), variational-Bayes clustering (cf. chapter  3), and PMC (cf. chapter  5.2.2). 
The posterior  distributions  of  the  Wilson coefficients  shown in  chapter  6.3 have been 
mapped out with  pypmc. With a parallel sampler class it is also possible to run multiple 
Markov chains or importance sampling on a computing cluster using mpi4py. pypmc was 
run on C2PAP (http://www.universe-cluster.de/c2pap) for the Wilson coefficient analysis 
(cf. chapter 6).

C Supplement to chapter 6
C.1 The HPQCD form factor constraint

The B →K μ
+
μ

−  form factors in EOS are each parametrized by two nuisance parameters 
as described in [KMPW10]. The parametrization consists of the form factor at q2

=0  and a 
slope  parameter.  We  vary  their  values  at  q2

=0  ( f T (0) , f 0(0)=f + (0))  and  a  slope 

parameter for each form factor  (bT , b0, b+ ) . Recent lattice calculations  [HPQCD13] use a 
different  parametrization.  To  include  their  result,  we  draw  50,000  B →K  form  factor 
samples  using  their  parametrization  (with  uncertainties)  for  the  values  of 
q2

=17 GeV 2 , q2
=20GeV 2 ,  and q2

=23GeV 2 . We include the sample mean and covariance 
(cf.  table  7) as Gaussian constraint  on the form factors.  This constraint  is available in 
[EOS] as  “B->K::f_0+f_++f_T@HPQCD-2013A”.  The  same  method  is  also  applied  in 
[BBD14].

71

http://www.universe-cluster.de/c2pap
http://pythonhosted.org/pypmc
https://github.com/fredRos/pypmc
https://pypi.python.org/pypi/pypmc


central values

q2 17 20 23

f 0(q
2
) 0.616 0.723 0.87

f + (q2) 1.13  1.63  2.68

f T (q2
) 1.02  1.47  2.42

covariance matrix

f 0(17) f 0(20) f 0(23) f + (17) f + (20) f + (23) f T (17) f T (20) f T (23)

f 0(17) 0.0303 0.0298 0.0253 0.0231 0.0224 0.0146 0.00544  0.005052 0.00354

f 0(20) 0.0338 0.0321 0.0172 0.0224 0.0163 0.00263 0.00498 0.00587

f 0(23) 0.0400 0.0129 0.0185 0.0232   0.000503 0.00268 0.00494

f + (17) 0.0531 0.0486 0.0250 0.0205  0.0143   0.00499

f + (20) 0.0726 0.0701 0.0146  0.0206   0.0226  

f + (23) 0.133  -0.00222 0.0149   0.0341  

f T (17) 0.0596  0.0557   0.0475  

f T (20) 0.0844   0.105    

f T (23) 0.181    

Table 7: Reproduced B+
→ K+  form factors from [HPQCD13] at q2

=17, 20, 23 GeV 2 ; the 
GeV 2  is  omitted  for  brevity.  This  constraint  enters  the  likelihood  used  in 
chapter 6 as multivariate Gaussian.
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C.2 Wilson coefficients – SM prediction

The standard model predicts the following numerical values for the Wilson coefficients:

 C 1
SM

=−0.291     C 2
SM

=+1.01    

   C 3
SM

=−0.00616        C 5
SM

=+0.000429  

 C 4
SM

=−0.0873         C 6
SM

=+0.00116    

C 7
SM

=−0.337
  
C 9

SM
=+4.27

  
C 8

SM
=−0.183 C 10

SM
=−4.17

Table 8: Standard model predictions for the Wilson coefficients.

Coefficients of operators not listed in table  8 but in equation  (93) or  (94) are zero in the 
standard model. When we state that we “keep some Wilson coefficient fixed at its standard 
model value”, we mean that we insert the value stated above. These values are taken from 
the file “parameters.cc” in [EOS]. For the theoretical calculation see [BMU00].

C.3 Internal EOS report

In  the  EOS python  interface,  the  log-posterior  (cf.  equation  (103))  is  implemented  as 
callable class named “Analysis”. The following is an excerpt of the string representation of 
the  “Analysis”  instance  used  for  the  model EFT .  The  model  SM  uses  the  same 
constraints  and  parameters  except  for  the  Wilson  coefficients.  With  the  information 
provided below, it is possible to reconstruct the “Analysis” instance we use.

Constraints (25): 
B^0_s->mu^+mu^-::BR@CMS-LHCb-2014 
B^+->K^+mu^+mu^-::BR[15.00,22.00]@LHCb-2014 
B^+->K^+mu^+mu^-::A_FB[15.00,22.00]@LHCb-2014 
B^+->K^+mu^+mu^-::F_H[15.00,22.00]@LHCb-2014 
B^+->K^+mu^+mu^-::BR[14.18,16.00]@CDF-2012 
B^+->K^+mu^+mu^-::BR[16.00,22.86]@CDF-2012 
B^+->K^+mu^+mu^-::A_FB[14.18,16.00]@CDF-2012 
B^+->K^+mu^+mu^-::A_FB[16.00,22.86]@CDF-2012 
B^+->K^+mu^+mu^-::BR[1.10,6.00]@LHCb-2014 
B^+->K^+mu^+mu^-::A_FB[1.10,6.00]@LHCb-2014 
B^+->K^+mu^+mu^-::F_H[1.10,6.00]@LHCb-2014 
B^+->K^+mu^+mu^-::BR[1.00,6.00]@CDF-2012 
B^+->K^+mu^+mu^-::A_FB[1.00,6.00]@CDF-2012 
B^0->K^*0mu^+mu^-::BR[1.00,6.00]@CDF-2012 
B^0->K^*0mu^+mu^-::BR[14.18,16.00]@CDF-2012 
B^0->K^*0mu^+mu^-::BR[16.00,19.21]@CDF-2012 
B^0->K^*0mu^+mu^-::BR[1.00,6.00]@CMS-2013A 
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B^0->K^*0mu^+mu^-::BR[14.18,16.00]@CMS-2013A 
B^0->K^*0mu^+mu^-::BR[16.00,19.00]@CMS-2013A 
B^0->K^*0mu^+mu^-::BR[1.00,6.00]@LHCb-2013 
B^0->K^*0mu^+mu^-::BR[14.18,16.00]@LHCb-2013 
B^0->K^*0mu^+mu^-::BR[16.00,19.00]@LHCb-2013 
B->K::f_0+f_++f_T@HPQCD-2013A 

B->K^*::V(s)/A_1(s)
external  constraint,  defined  as  “('B->K^*::V(s)/A_1(s)',  (9.300000e-01,  1.330000e+00, 
1.730000e+00), 1, {'s': 0},{})” in the python interface

B->K^*ll::xi_para(s)@LargeRecoil
external  constraint,  defined  as  “('B->K^*ll::xi_para(s)@LargeRecoil',  (8.000000e-02, 
1.000000e-01, 1.300000e-01), 1, {'s': 0},{})” in the python interface; this is the constraint on 
A0(0)  mentioned in  chapter  6.2.2;  note  that  mB/(2mK*)⋅ξ∥(0)= A0(0)  (equation  (46)  in 

[BFS01]))

Parameters (37): 

Parameter: Re{c10}, prior type: flat, range: [-8,8]

Parameter: Re{c10'}, prior type: flat, range: [-8,8]

Parameter: Re{cS}, prior type: flat, range: [-2,2]

Parameter: Re{cS'}, prior type: flat, range: [-2,2]

Parameter: Re{cP}, prior type: flat, range: [-2,2]

Parameter: Re{cP'}, prior type: flat, range: [-2,2]

Parameter: Re{cT}, prior type: flat, range: [-2,2]

Parameter: Re{cT5}, prior type: flat, range: [-2,2]

Parameter: CKM::A, prior type: Gaussian, range: [0.746,0.866], x = 0.806 +- 0.02

Parameter:  CKM::lambda,  prior  type:  Gaussian,  range:  [0.2235,0.2271],  x  =  0.2253 +- 
0.0006

Parameter: CKM::rhobar, prior type: Gaussian, range: [0,0.279], x = 0.132 +- 0.049

Parameter: CKM::etabar, prior type: Gaussian, range: [0.219,0.519], x = 0.369 +- 0.05

Parameter: mass::c, prior type: Gaussian, range: [1.2,1.35], x = 1.275 +- 0.025

Parameter: mass::b(MSbar), prior type: Gaussian, range: [4.09,4.27], x = 4.18 +- 0.03
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Parameter:  B->K::F^p(0)@KMPW2010,  prior  type:  LogGamma,  range:  [0.28,0.49],  x  = 
0.34 + 0.05 - 0.02, nu: 0.3236724766, lambda: -0.01057400395, alpha: 0.2134998211

Parameter: B->K::b^p_1@KMPW2010, prior type: LogGamma, range: [-6.9,0.6], x = -2.1 + 
0.9 - 1.6, nu: -1.573670794, lambda: 0.6735185814, alpha: 0.4577362921

Parameter: B->K::b^0_1@KMPW2010, prior type: LogGamma, range: [-7,-1.9], x = -4.3 + 
0.8 - 0.9, nu: -9.340788748, lambda: 2.398326773, alpha: 8.180832916

Parameter: B->K::F^t(0)@KMPW2010, prior type: LogGamma, range: [0.3,0.54], x = 0.39 
+ 0.05 - 0.03, nu: 0.3755538144, lambda: -0.02465414113, alpha: 0.5565747942

Parameter: B->K::b^t_1@KMPW2010, prior type: LogGamma, range: [-8.2,0.8], x = -2.2 + 
1 - 2, nu: -1.496155866, lambda: 0.649022381, alpha: 0.3380815294

Parameter: decay-constant::B_s, prior type: Gaussian, range: [0.2126,0.2426], x = 0.2276 
+- 0.005

Parameter: B->Pll::Lambda_pseudo@LowRecoil, prior type: Gaussian, range: [-0.45,0.45], 
x = 0 +- 0.15

Parameter: B->Pll::Lambda_pseudo@LargeRecoil, prior type: Gaussian, range: [-1,1], x = 
0 +- 0.5

Parameter: B->K^*::F^V(0)@KMPW2010, prior type: LogGamma, range: [0,1.05], x = 0.36 
+ 0.2 - 0.12, nu: 0.3022152575, lambda: -0.09861656452, alpha: 0.5565747942

Parameter: B->K^*::b^V_1@KMPW2010, prior type: LogGamma, range: [-6,-2.4], x = -4.8 
+ 0.8 - 0.4, nu: -5.081537654, lambda: -0.2596089524, alpha: 0.3380815294

Parameter: B->Vll::Lambda_pp@LowRecoil, prior type: Gaussian, range: [-0.45,0.45], x = 
0 +- 0.15

Parameter:  B->K^*ll::A_perp^L_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15

Parameter:  B->K^*ll::A_perp^R_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15

Parameter: B->K^*::F^A1(0)@KMPW2010, prior type: LogGamma, range: [-0.05,0.73], x = 
0.25 + 0.16 - 0.1, nu: 0.2106883267, lambda: -0.08785614571, alpha: 0.6392529699

Parameter: B->K^*::b^A1_1@KMPW2010, prior type: LogGamma, range: [-2.06,2.92], x = 
0.34 + 0.86 - 0.8, nu: 12.04893371, lambda: -3.82122298, alpha: 21.41699759

Parameter: B->K^*::F^A2(0)@KMPW2010, prior type: LogGamma, range: [-0.07,0.8], x = 
0.23 + 0.19 - 0.1, nu: 0.1639902416, lambda: -0.06879076328, alpha: 0.3830564201

Parameter: B->K^*::b^A2_1@KMPW2010, prior type: LogGamma, range: [-4.9,5.4], x = 
-0.85 + 2.88 - 1.3, nu: -1.847162905, lambda: -0.7617511116, alpha: 0.2700791263
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Parameter: B->Vll::Lambda_0@LowRecoil, prior type: Gaussian, range: [-0.45,0.45], x = 0 
+- 0.15

Parameter: B->Vll::Lambda_pa@LowRecoil, prior type: Gaussian, range: [-0.45,0.45], x = 
0 +- 0.15

Parameter:  B->K^*ll::A_0^L_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15

Parameter:  B->K^*ll::A_0^R_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15

Parameter:  B->K^*ll::A_par^L_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15

Parameter:  B->K^*ll::A_par^R_uncertainty@LargeRecoil,  prior  type:  Gaussian,  range: 
[0.55,1.45], x = 1 +- 0.15
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List of abbreviations
cov: covariance
dof: degrees of freedom
EFT: effective field theory
EM: expectation maximization
ESS: effective sample size
FCNC: flavor changing neutral current
HMC: Hamiltonian Monte Carlo
HC: hierarchical clustering
iid: independent and identically distributed
IS: importance sampling
KL: Kullback-Leibler divergence
MC: Markov chain
PDF: probability density function
PMC: Population Monte Carlo
QCD quantum chromodynamics
QCDF QCD factorization
QFT: quantum field theory
SM: standard model
var: variance
VB: variational Bayes
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[Cap+08]: Cappé, O. and Douc, R. and Guillin, A. and Marin, J.-M. and Robert, C. P.;  
Adaptive Importance Sampling in  General  Mixture Classes;  Statistics and 
Computing, Volume 18, Issue 4, pp. 447-459, 2008
DOI: 10.1007/s11222-008-9059-x

[CDF12]: Miyake,  H.  and  Kim,  S.  and  Ukegawa,  F.;  Updated  Branching  Ratio 
Measurements  of  Exclusive  b→ sμ

+
μ

−  decays  and  Angular  Analysis  in 
B→K (*)

μ
+
μ

−  decays; 2012
http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96/  
http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-
b2smumu_96/public_b2smumu.pdf

[Cia14]: De  Cian,  M.;  Analysing  B0
→K * 0

μ
+
μ

−  at  LHCb;  2014,  University  of 
Heidelberg, Workshop Neckarzimmern
http://www.physi.uni-
heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/Nec
karzimmernKstmumuExp.pdf

[CL14]: Caldwell,  A.  and  Liu,  C.;  Target  Density  Normalization  for  Markov  Chain 
Monte Carlo Algorithms; 2014
arXiv:1410.7149

[CMM97]: Chetyrkin, K. and Misiak, M. and Munz, M.; Weak Radiative B-Meson Decay 
Beyond Leading Logarithms; Physics Letters B, Volume 400, Issues 1 - 2, 
pp. 206 - 219, 1997
DOI: 10.1016/S0370-2693(97)00324-9

80

http://dx.doi.org/10.1016/S0370-2693(97)00324-9
http://arxiv.org/abs/1410.7149
http://www.physi.uni-heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/NeckarzimmernKstmumuExp.pdf
http://www.physi.uni-heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/NeckarzimmernKstmumuExp.pdf
http://www.physi.uni-heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/NeckarzimmernKstmumuExp.pdf
http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96/public_b2smumu.pdf
http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96/public_b2smumu.pdf
http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96/
http://dx.doi.org/10.1007/s11222-008-9059-x
http://dx.doi.org/10.1198/106186004X12803
http://dx.doi.org/10.1103/PhysRevD.71.014029
http://arxiv.org/abs/hep-ph/9806471
http://dx.doi.org/10.1103/PhysRevD.64.074014
http://dx.doi.org/10.1016/S0550-3213(00)00007-9
http://arxiv.org/abs/1308.5870


[CMS12]: Chatrchyan, S. et al.; Observation of a new boson at a mass of 125 GeV with 
the CMS experiment at the LHC; Physics Letters B, Volume 716, Issue 1, 
pp. 30-61, 2012
DOI: 10.1016/j.physletb.2012.08.021

[CMS13]: Chatrchyan, S. et al.; Angular analysis and branching fraction measurement 
of  the  decay  B0

→K *0
μ

+
μ

− ;  Physics  Letters  B,  Volume  727,  Issues  1-3, 
pp. 77-100, 2013
DOI: 10.1016/j.physletb.2013.10.017

[Cor+12]: Cornuet, J.-M. et al.; Adaptive Multiple Importance Sampling; Scandinavian 
Journal of Statistics Vol. 39 Issue 4, pp. 798-812, 2012
DOI: 10.1111/j.1467-9469.2011.00756.x

[Cro10]: Crooks, G. E.; The Amoroso Distribution; 2010
arXiv:1005.3274

[DKPR87]: Duane, S. and Kennedy, A. D. and Pendleton, B. J. and Roweth, D.; Hybrid 
Monte Carlo; Physics Letters B, Volume 195, Issue 2, pp. 216-222, 1987
DOI: 10.1016/0370-2693(87)91197-X

[DLR77]: Dempster, A. P. and Laird, N. M. and Rubin, D. B.; Maximum Likelihood from 
Incomplete Data via the EM Algorithm; 1977, Journal of the Royal Statistical 
Society, Series B, Vol. 39, No. 1
http://www.jstor.org/stable/2984875

[DMV13]: Descotes-Genon,  S.  and  Matias,  J.  and  Virto,  J.;  Understanding  the 
B →K *

μ
+
μ

−  anomaly; Physical Review D, Volume 88, Issue 7, pp. 074002, 
2013
DOI: 10.1103/PhysRevD.88.074002

[Dyk12]: van Dyk, D.; The decays B →K (*)ℓ+ℓ−  at Low Recoil and their Constraints on 
New Physics; Ph.D. Thesis, Technische Universität Dortmund, 2012
http://hdl.handle.net/2003/29514

[EB64]: Englert, F. and Brout, R.; Broken Symmetry and the Mass of Gauge Vector 
Mesons; Physical Review Letters, Volume 13, Issue 9, pp. 321-323, 1964
DOI: 10.1103/PhysRevLett.13.321

[EOS]: http://project.het.physik.tu-dortmund.de/eos/;  version  used  in  this  thesis: 
http://project.het.physik.tu-dortmund.de/source/eos/tag/?id=sjahn-tensorop

[Ete81]: Etemadi,  N.;  An  elementary  proof  of  the  strong  law  of  large  numbers; 
Springer-Verlag, pp. 119-122, 1981
DOI: 10.1007/BF01013465

[GG14]: Gottron, T. and Gottron, C.; Perplexity of Index Models over Evolving Linked 
Data;  Springer  International  Publishing,  The  Semantic  Web:  Trends  and 
Challenges, Lecture Notes in Computer Science Volume 8465, pp. 161-175, 
2014
DOI: 10.1007/978-3-319-07443-6_12

81

http://dx.doi.org/10.1007/978-3-319-07443-6_12
http://dx.doi.org/10.1007/BF01013465
http://project.het.physik.tu-dortmund.de/source/eos/tag/?id=sjahn-tensorop
http://project.het.physik.tu-dortmund.de/eos/
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://hdl.handle.net/2003/29514
http://dx.doi.org/10.1103/PhysRevD.88.074002
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://arxiv.org/abs/1005.3274
http://dx.doi.org/10.1111/j.1467-9469.2011.00756.x
http://dx.doi.org/10.1016/j.physletb.2013.10.017
http://dx.doi.org/10.1016/j.physletb.2012.08.021


[GHK64]: Guralnik, G. S. and Hagen, C. R. and Kibble, T. W. B.; Global Conservation 
Laws and Massless Particles; Physical Review Letters, Volume 13, Issue 20, 
pp. 585-587, 1964
DOI: 10.1103/PhysRevLett.13.585

[GP04]: Grinstein, B. and Pirjol, D.; Exclusive rare B →K *ℓ+ ℓ−  decays at low recoil: 
controlling  the  long-distance  effects;  Physical  Review  D,  Volume  70, 
pp. 114005, 2004
DOI: 10.1103/PhysRevD.70.114005

[GR04]: Goldberger, J. and Roweis, S. T.; Hierarchical Clustering of a Mixture Model; 
2004, Advances in Neural Information Processing Systems 17 (NIPS 2004)
http://papers.nips.cc/paper/2585-hierarchical-clustering-of-a-mixture-model

[GR92]: Gelman,  A.  and  Rubin,  D.  B.;  Inference  from  Iterative  Simulation  Using 
Multiple  Sequences;  1992,  Statistical  Science,  Volume  7,  Number  4, 
pp. 457-472
http://www.jstor.org/stable/2246093

[Ham+13]: Hambrock, C. and Hiller, G. and Schacht, S. and Zwicky, R.;  B→K *  Form 
Factors from Flavor Data to QCD and Back; 2013
arXiv:1308.4379v1

[Has70]: Hastings, W. K.; Monte Carlo sampling methods using Markov chains and 
their applications; Biometrika, Volume 57, Number 1, pp. 97-109, 1970
DOI: 10.1093/biomet/57.1.97

[Hig64]: Higgs,  P.  W.;  Broken  Symmetries  and  the  Masses  of  Gauge  Bosons; 
Physical Review Letters, Volume 13, Issue 16, pp. , 1964
DOI: 10.1103/PhysRevLett.13.508

[Hoo+12]: Hoogerheide, L. and Opschoor, A. and van Dijkc, H. K.; A class of adaptive 
importance  sampling  weighted  EM  algorithms  for  efficient  and  robust 
posterior  and  predictive  simulation;  Journal  of  Econometrics,  Vol.  171, 
Issue 2, pp. 101-120, 2012
DOI: 10.1016/j.jeconom.2012.06.011

[HPQCD13]: Bouchard,  C.  and  Lepage,  P.  G.  and  Monahan,  C.  and  Na,  H.  and 
Shigemitsu,  J.;  Rare  decay  B →K ℓ+ ℓ−  form  factors  from  lattice  QCD; 
Physical Review D 88, pp. 054509, 2013
DOI: 10.1103/PhysRevD.88.054509

[Jam06]: James, F.; Statistical methods in experimental physics; World Scientific 2006
ISBN: 978-981-256-795-6  
http://www.worldscientific.com/worldscibooks/10.1142/6096

[JB03]: Jaynes, E. T. and Bretthorst, G. L.; Probability Theory; Cambridge University 
Press 2003
ISBN: 978-0-521-59271-0
http://www.cambridge.org/asia/catalogue/catalogue.asp?
isbn=9780521592710

82

http://www.cambridge.org/asia/catalogue/catalogue.asp?isbn=9780521592710
http://www.cambridge.org/asia/catalogue/catalogue.asp?isbn=9780521592710
http://www.worldscientific.com/worldscibooks/10.1142/6096
http://dx.doi.org/10.1103/PhysRevD.88.054509
http://dx.doi.org/10.1016/j.jeconom.2012.06.011
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1093/biomet/57.1.97
http://arxiv.org/abs/1308.4379v1
http://www.jstor.org/stable/2246093
http://papers.nips.cc/paper/2585-hierarchical-clustering-of-a-mixture-model
http://dx.doi.org/10.1103/PhysRevD.70.114005
http://dx.doi.org/10.1103/PhysRevLett.13.585


[JC14]: Jäger, S. and Camalich, J. M.; Reassessing the discovery potential of the 
B →K *ℓ+ ℓ−  decays  in  the  large-recoil  region:  SM  challenges  and  BSM 
opportunities; 2014
arXiv:1412.3183

[Kil+09]: Kilbinger,  M.  et  al.;  Bayesian  model  comparison  in  cosmology  with 
Population Monte Carlo; 2009
arXiv:0912.1614

[KL51]: Kullback, S. and Leibler,  R. A.;  On Information and Sufficiency; Annals of 
Mathematical Statistics, Vol. 22, Nr. 1, pp. 79-86, 1951
DOI: 10.1214/aoms/1177729694

[KMPW10]: Khodjamirian,  A.  and  Mannel,  T.  and  Pivovarov,  A.  A.  and  Wang,  Y.-M.; 
Charm-loop  effect  in  B →K (*)ℓ+ℓ−  and  B →K *  ;  Journal  of  High  Energy 
Physics, 2010
DOI: 10.1007/JHEP09(2010)089

[Koc07]: Koch, K.-R.; Introduction to Bayesian Statistics; Springer 2007
ISBN: 978-3-540-72723-1
http://link.springer.com/book/10.1007/978-3-540-72726-2

[Kol33]: Kolmogorov, A. N.; Grundbegriffe der Wahrscheinlichkeitsrechnung; english 
title: Foundations of the Theory of Probability; Springer 1933
http://www.clrc.rhul.ac.uk/resources/fop/index.htm

[LC95]: Chen, J. S. and Chen, R.; Blind Deconvolution via Sequential Imputations; 
1995,  Journal  of  the  American  Statistical  Association,  Vol.  90,  No.  430, 
pp. 567-576
http://www.jstor.org/stable/2291068

[Lem09]: Lemieux, C.; Monte Carlo and Quasi-Monte Carlo Sampling; Springer New 
York 2009
ISBN: 978-0-387-78165-5
http://dx.doi.org/10.1007/978-0-387-78165-5

[LHC13A]: Aaij, R. et al.; Measurement of Form-Factor-Independent Observables in the 
Decay  B0

→K * 0
μ

+
μ

− ;  Physical  Review  Letters,  Volume  111,  Issue  19, 
pp. 191801, 2013
DOI: 10.1103/PhysRevLett.111.191801

[LHC13B]: Aaij,  R.  et  al.;  Differential  branching  fraction  and angular  analysis  of  the 
decay B0

→K * 0
μ

+
μ

− ; Journal of High Energy Physics
DOI: 10.1007/JHEP08(2013)131

[LHC14A]: Aaij,  R. et  al.;  Differential  branching fractions and isospin asymmetries of 
B→K (*)

μ
+
μ

−  decays;  Journal  of  High  Energy  Physics,  2014
DOI: 10.1007/JHEP06(2014)133

83

http://dx.doi.org/10.1007/JHEP06(2014)133
http://dx.doi.org/10.1007/JHEP08(2013)131
http://dx.doi.org/10.1103/PhysRevLett.111.191801
http://dx.doi.org/10.1007/978-0-387-78165-5
http://www.jstor.org/stable/2291068
http://www.clrc.rhul.ac.uk/resources/fop/index.htm
http://link.springer.com/book/10.1007/978-3-540-72726-2
http://www.dx.doi.org/10.1007/JHEP09(2010)089
http://dx.doi.org/10.1214/aoms/1177729694
http://arxiv.org/abs/0912.1614
http://arxiv.org/abs/1412.3183


[LHC14B]: Aaij, R. et al.; Angular analysis of charged and neutral  B →K μ
+
μ

−  decays; 
Journal of High Energy Physics, 2014
DOI: 10.1007/JHEP05(2014)082

[LHC14C]: Aaij, R. et al.; Test of lepton universality using B+
→K +ℓ+ ℓ−  decays; Physical 

Review Letters, Volume 113, pp. 151601, 2014
DOI: 10.1103/PhysRevLett.113.151601

[LWL10]: Laiho, J. and Lunghi, E. and Van de Water, R. S.; Lattice QCD inputs to the 
CKM unitarity triangle analysis; Physical Review D, Volume 81, pp. 034503, 
2010
DOI: 10.1103/PhysRevD.81.034503
see also http://www.latticeaverages.org/

[Mar11]: Martin, S. P.; A Supersymmetry Primer; 2011
arXiv:hep-ph/9709356

[Met+53]: Metropolis, N. and Rosenbluth, A. W. and Rosenbluth, M. N. and Teller, A. H. 
and Teller, E.; Equation of State Calculations by Fast Computing Machines; 
Journal of Chemical Physics, Volume 21, Number 6, pp. 1087-1092, 1953
DOI: 10.1063/1.1699114

[Neu05]: Neubert, M.; Effective Field Theory and Heavy Quark Physics; 2005
arXiv:hep-ph/0512222

[PDG14]: Olive, K.A. et al.; Particle Data Group; Chinese Physics C, Vol. 38, Article 
090001, pp. 33, 2014
DOI: 10.1088/1674-1137/38/9/090001

[SB05]: Svensén,  M.  and  Bishop,  C.  M.;  Robust  Bayesian  mixture  modelling; 
Neurocomputing, Vol. 64, pp. 235-252, 2005
DOI: 10.1016/j.neucom.2004.11.018

[Ski06]: Skilling,  J.;  Nested sampling for  general  Bayesian computation;  Bayesian 
Analysis, Volume 1, Number 4, pp. 833-859, 2006
DOI: 10.1214/06-BA127

[TIF12]: Takekawa, T. and Isomura, Y. and Fukai, T.; Spike sorting of heterogeneous 
neuron types by multimodality-weighted PCA and explicit robust variational 
Bayes; Frontiers in Neuroinformatics, 2012
DOI: 10.3389/fninf.2012.00005

[Tri87]: Trimble, V.;  Existence and Nature of Dark Matter in the Universe; Annual 
Review of Astronomy and Astrophysics, Volume 25, pp. 425-427, 1987
DOI: 10.1146/annurev.aa.25.090187.002233

84

http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.3389/fninf.2012.00005
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1016/j.neucom.2004.11.018
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://arXiv.org/abs/hep-ph/0512222
http://dx.doi.org/10.1063/1.1699114
http://arxiv.org/abs/hep-ph/9709356
http://www.latticeaverages.org/
http://dx.doi.org/10.1103/PhysRevD.81.034503
http://dx.doi.org/10.1103/PhysRevLett.113.151601
http://dx.doi.org/10.1007/JHEP05(2014)082


[UTfit13]: Bona,  M.  et  al.;  The  Unitarity  Triangle  Fit  in  the  Standard  Model  and 
Hadronic  Parameters  from  Lattice  QCD:  A  Reappraisal  after  the 
Measurements of Δms  and BR (B→ τν τ);  2006
arXiv:hep-ph/0606167
We use the "Tree level Fit" results from:
http://www.utfit.org/UTfit/ResultsSummer2013PostEPS

[Wei+09]: Wei,  J.-T.  et  al.;  Measurement  of  the  Differential  Branching Fraction  and 
Forward-Backward  Asymmetry  for  B →K (*)ℓ+ℓ− ;  Physical  Review  Letters, 
Volume 103, pp. 171801, 2009
DOI: 10.1103/PhysRevLett.103.171801

85

http://dx.doi.org/10.1103/PhysRevLett.103.171801
http://www.utfit.org/UTfit/ResultsSummer2013PostEPS
http://arxiv.org/abs/hep-ph/0606167


Acknowledgments
Thanks to the following people:
• Prof. Allen Caldwell for the opportunity to write this thesis at all
• Dr. Frederik Beaujean for mentoring
• Dr. Christoph Bobeth and Dr. Danny van Dyk for additional theory explanations
• Dr. David Straub for helpful remarks
• Takashi Takekawa for e-mail correspondence about the variational-Bayes method 

with Student's T mixtures
• Andreas Weiss and his successor Mario Nessler for their IT support
• Dr. Andreas Müller for organizing interesting workshops
• Ivan Vorobyev for being a nice roommate
• Sonja Lutz-Lampertseder for organizing me an office, coffee, and stationery
• My family for supporting me all my life

We acknowledge the support by the DFG Cluster of Excellence "Origin and Structure of 
the Universe". The simulations have been carried out on the computing facilities of the 
Computational Center for Particle and Astrophysics (C2PAP).

86


	1 Introduction
	2 Probability theory
	2.1 Basics
	2.2 Bayes' theorem
	2.3 Law of large numbers

	3 Variational Bayes
	3.1 Basics
	3.2 Gaussian mixture
	3.3 Student's T mixture
	3.3.1 Framework
	3.3.2 Conjugate prior for the degrees of freedom


	4 Monte Carlo sampling methods
	4.1 Markov chains
	4.2 Importance sampling
	4.2.1 Basics
	4.2.2 Adaptive importance sampling


	5 Importance sampling initialized with Markov chains
	5.1 Markov chain prerun
	5.2 First Proposal for importance sampling
	5.2.1 Hierarchical clustering
	5.2.2 Population Monte Carlo
	5.2.3 Variational Bayes
	5.2.4 Discussion
	5.2.4.1 Asymptotically Gaussian toy target
	5.2.4.2 Fat-tailed toy target
	5.2.4.3 Conclusion


	5.3 Further proposal updates
	5.3.1 Original algorithm
	5.3.2 Enhanced algorithm
	5.3.3 Discussion

	5.4 Final run

	6 Bayesian analysis of new physics in rare B decays
	6.1 Theory of rare B decays
	6.2 Methodology
	6.2.1 Experimental constraints
	6.2.2 Parameters and priors

	6.3 Results and discussion
	6.4 Sampling performance

	7 Conclusion
	A Probability Distributions
	A.1 Gauss / Normal
	A.2 Student's T
	A.3 Gamma
	A.4 Log-gamma
	A.5 Dirichlet
	A.6 Wishart
	A.7 Normal-Wishart

	B The python package pypmc
	C Supplement to chapter 6
	C.1 The HPQCD form factor constraint
	C.2 Wilson coefficients – SM prediction
	C.3 Internal EOS report


