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Logical Basis

Model building and making predictions from models follows deductive
reasoning:

Given A=»B  (major premise)
Given B=»C (major premise)
Then, given A you can conclude that Cis true

etc.

Everything is clear, we can make frequency distributions of possible
outcomes within the model, etc. This is math, so it is correct ...



Logical Basis

However, in physics what we want to know is the validity of the model
given the data. i.e., logic of the form:

Given A=»C with some ‘probability’
Measure C, what can we say about A ?

Well, maybe A;=>C, A,=>C, ...
We can only disprove (C not possible in A, then A invalid).

We are only capable of expressing a ‘degree of belief’ in A. And since
we can never say anything is true, the question is —is it good enough ?
Are we willing to bet on A providing the right answer to the next
qguestion ? Under what odds ?



Logical basis

Instead of truth, we consider knowledge
Knowledge = justified true belief

Justification comes from the data.

Start with some knowledge or maybe plain belief
Build a model

Make some predictions

Do the experiment

Data analysis gives updated knowledge (belief in possible parameter
values)



Which probability ?

Data analysis is based on building a ‘probability’ for the data. But is this
well defined ?

Imagine we flip a coin 10 times, and get the following result:
THTHHTHTTH

We now repeat the process with and get
TTTTTTTTTT

Which outcome has higher probability ?



Take a model where H, T are equally likely. Then, probability of the
seguence is

outcome 1

And
outcome 2

Something seem wrong with this result ?

Given a fair coin, we could also calculate the chance of getting n times
H:



And we find the following result:

p
1.2—10
10-2—10
45.2—10
120-2—10
210 -2~ 10
252 .2—10
210 -2~ 10
120 -2~ 10
45 .2~ 10
10 -2~ 10
10 1.2-10

O© 00 O O Wi+~ OB

There are typically an infinite number of
choices you can make for the ‘probability of the
data’ or likelihood.

If someone claims to have an optimal
definition, ask them ‘based on what criterion ?’
There is no one best answer !

Choosing a probability of your data is a critical component of the
analysis process. Get the most out of your data !



Mathematical Definitions

Consider a set, S, the sample space, which can be divided into subsets.

Probability 1s a real-valued function defined by the
Axioms of Probability (Kolmogorov):

1. For every subset Ain S, P(A)=0.
% 2. For disjoint subsets
ANB =9,
P(AU B) = P(A) + P(B)

3. P(S)=1



Mathematical Definitions

Definition of conditional probability:

P(A|B) = P(A(B)
S P(B)

o

Since P(A(1B) = P(B()A), Bayes' Theorem follows

P(BJA)P(A)

P(AIB) = == 5




Law of Total Probability

P(B) = EP(B|A1')P(A1)

for any subset B and for disjoint A. such that U, 4, =S

Combining with Bayes' Theorem gives

P(BI4)P(4)
. P(B|4,)P(4,)

P(A|B) =

If you want to make a statement about how much ‘probability’ to assign to A, there is only one
way — Bayes’ Theorem.



Why isn’t everyone a Bayesian ?

My suspicion: it 1s because most people do not understand the frequentist
approach. Frequentist statements and Bayesian statements are thought to

be about the same logical concept, and the frequentist statement does not
require a prior, so ...

A. L. Read, Presentation of search results: the CL¢ technique, J. Phys. G: Nucl. Part. Phys. 28
(2002) 2693-2704.

nearly all physicists tend to misinterpret frequentist results as statements
about the theory given the data.

Frequentist statements are not statements about the model — only about
the data in the context of the model. This is not what we wanted to know
... At least not the ultimate statement.

SOS 12



Why isn’t everyone a Bayesian ?

G. D’ Agostini, Probably a discovery: Bad mathematics means rough scientific communication,
arXiv:1112.3620v2 [physics.data-an]
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This 1s nonsense !

SOS

Quoting a Discovery article:

It 1s what 1s known as a " "three-
sigma event,” and this refers to the
statistical certainty of a given result.
In this case, this result has a 99.7
percent chance of being correct (and
a 0.3 percent chance of being
wrong).”

| — P(D|Ho) = P(H;|D)
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The Higgs announcement

Gemeinsame Presseerklarung des

Komitee fiir Elementarteilchenphysik KET
Forschungsschwerpunkt ATLAS (BMBF-FSP 101 ATLAS)
Forschungsschwerpunkt CMS (BMBF-FSP 102 CMYS)
Deutsches Elektronen-Synchrotron DESY
Max-Planck-Institut fiir Physik

Helmholtz-Allianz ,,Physik an der Teraskala“

Der Nachweis eines neuen Teilchens wird in der Teilchenphysik klassischerweise auf zwei Stufen
gestellt: Die Messungen, die die Wissenschaftler an thren Experimenten durchfiihren, beruhen auf
Statistik. Sie geben daher zu jedem ihrer Ergebnisse die Sicherheit als so genannte Signifikanz

an. Die Einheit, die sie daflir verwenden ist sigma, dargestellt durch den griechischen Buchstaben
o. Die erste Stufe eines Teilchenfunds (,,evidence) ist erreicht, wenn sich das Signal des
Teilchens mit einer Deutlichkeit zeigt, dass die Physiker mit 99,75 Prozent Sicherheit von seiner
Echtheit ausgehen. Dies entspricht einer Signifikanz von 36. Von einer ,,Entdeckung* und damit

der zweiten Stufe sprechen die Forscher bei einer Signifikanz von 5o, das entspricht einer
Fehlerwahrscheinlichkeit von 0,000057%.

Translation - Probability of error 1s 0,000057%

SOS 14



What happened

equated — P(D|Hy) = P(H1|D)
Probability of observing the Probability that the Higgs

data or something more
extreme given the background
only hypothesis

exists

This is logical nonsense ...

Who’s fault is this confusion ? I would say — physicists should know
better ! In the Bayesian approach, we state our prior assumptions

S%gld show how they lead to the conclusions. .



Poisson Distribution

A Poisson distribution applies when we do not know the number of trials
(it 1s a large number), but we know that there 1s a fixed probability of
‘success’ per trial, and the trials occur independently of each other.

Alternatively — a continuous time process with a constant rate will
produce a Poisson distributed number of events 1n a fixed time interval.

High energy physics example: beams collide at a high frequency (10
MHz, say), and the chance of a ‘good event’ i1s very small. The resulting
number of events in a fixed time will follow a Poisson distribution. A
single trial 1s one crossing of the beams.

Nuclear physics example: a large sample of radioactive atoms will
produce a Poisson distributed number of events in a fixed time interval
(assuming a ™>>T)

SOS 16



Poisson Distribution

The Poisson distribution can be derived from the Binomial distribution in
the limit when N —o and p —0, but Np fixed and finite. Then

P(r|N,p) — P(n|v)

The expected number of events 1s calculated from a rate, or from a
luminosity and cross section or some other way

v=R-T or v=L -0 or...



Poisson Distribution - derivation

P(n|N,p) =

N

n(] _ N—n
n!(N—n)!p (1=p)
v N " ( V)N_”

P(n|N, 2 =
N, N = N )i v

P(n|v) = Poisson Distribution

SOS



Poisson Example

Quantity used 1n likelihood
/ analysis

P(nly)

SoooooSSS
Sr=EINWRARUNTIAANINR\O

6
A) .
8 4 Probability of
10 12 14 \ the data used
16,9 2

in confidence
o 0 level setting



P(nlv)=

v'ie

n!

v=0.1
e l
0 5

v=1.0
1|
0 10

v=5.0
ln””HHHH”n&

0 10
v=20.
il

0 25

Poisson Distribution-cont.

Notes:

* As v increases, the
distribution becomes more
symmetric

» Approximately Gaussian for
large v

20



Bayesian Data Analysis-Poisson Distribution

Typical examples — counting experiments, failure rates, cross sections,...

_ Pp)Rv) S RW)
P = T Pl Po)de ~ [ 2 Ry

This 1s our master formula. Result in general will depend on choice of
prior. In general, we need to go straight to the numerical solution.

Why not — computing 1s cheap today. Avoid the simplifications and
approximations. You can do the full calculation given the right tool.

SOS 21



Poisson - cont.

This 1s a lecture, so you expect some formulae.

If we assume a flat prior starting at 0 and extending up to some
maximum of v much larger than n.

R =
(VIn) = =ne= = e
fO n! PO(V)dV 0 n! dv

Vmax n_, —v o0
/ Y v i/ v'e Vdy = in! =1
0 n! n! Jo n!

—UV,,N
P(vin) = S vV =n

SOS

22



Poisson - cont.

The expectation value:

> < yteV 1)!
<V>:/ P(V‘H)Vduz/ T 5 dy = (n+1) =n + 1
0 0

n! n!

The variance:

0? = / P(v|n)(v— < v >)*dv |
0
= / - VQdV—<V>2/ 7€ dv
0 n! 0 n!
(n +2)!




Poisson - cont.

Note: n=0 <v>=] ???

From prior, expect < v >

/ P()(V)VdV:/ Yy
0 0 Vmax

B [ VZ ]Vma:c
2(Vma:c) 0

LAN@CME

2

What happened ? n=0 1s a measurement !

P(v|0) ="

SOS 24



Poisson — cont.

P(vin)

08 | n=0
Some examples

04

0.2 |

Comments: 04 5 10 15 20
1%

If you decide to quote the mode as your nominal result, you would use

v'=n. For large enough n, the 68% probability region is then
approximately

n—+v/n—n-+n

SOS



Poisson - cont.

The cumulative distribution function:

v m ,—v
Ve
F(vin) = / ' dv'
0 n!
1 m_—v v g m—1_—v'dv’
= — |=v"e " |f+n | v e
n' 0



Poisson — Examples

Assume measure zero counts.

With flat prior assumption Plviln=0) = e"
Flvjn=0) = 1—¢e"
For a 95% credibility upper L
limit : |
095 — 1 - e_y 0.8 -
v o~ J [
0.6 — Jx=5 x=10
04 I
0.2
0 0 5 20

SOS
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Poisson — cont.

What if we cannot (or do not want to) take a flat prior

Suppose we can model the prior belief as P,(v) = %e-wlo

e’ —e
Now Bayes tellsus P(v I x =0) = — POIWARLV)  _ 10 _U o1 V)10

1 10
PO IWV)P,(v)dv — e 10 gy,
{ OWPRmdv [

<V >= f%e’m/lovdv =091

0

P(v=2.7)=95%,1.e., v<2.7 with 95% probability



Exercises

paper and pencil

a) Find the distribution of the waiting time for the k' event in a process with a constant
rate A.

b) For a Poisson with mean 1.5, what 1s the probability to see 6 or more events ? What is
the probability to see exactly 0 events ?

c) Prove that for a Poisson distribution

n*=|v|=v|l—-1



Poisson Distribution-cont.

We often have to deal with a superposition of two Poisson processes —
the signal and the background, which are indistinguishable in the
experiment. Usually we know the background expectations and want to
know the probability of a signal in addition.

Example, the signal for large extra dimensions may be the observation of
events where momentum balance 1s (apparently) strongly violated.
However this can be mimicked by neutrinos, energy leakage from the
detector, etc.



Use the subscripts B for background, s for signal,

and assume n events are observed

P(n) = iP(ns lv)P(n—n_lvy)

4%
ng Binomial formula with P = >
o VBtV E /\ V. + Vg
'(n n)l
n ng n—ng
— e_(VB +Vy) V T Vp E Vs Vg
'(n n)'v+v V. +V,
n
_e—(v3+v )(V TV )

=1 by normalization



The Bayesian Way

e Hu™
p=XA+v Py ="21

n!
Assuming that the background 1s perfectly known:

P(nlv, A\) Po(v)
[ P(n|v,\)Py(v)dv

P(v|n,\) =

assuming a flat Py (v) and integrating by parts.

Oty
'Zz 0 z'

P(v|n,\) =

The cumulative pdfis  |F'(v|n,A) =1 —

SOS

32



f(v)

0.15

0.1

0.05

0.75

0.5
0.25

SOS

Poisson — cont.

Comment:

For n=0, P(v|n, A)=e™V. It
does not matter how much
background you have, you

get the same probability
distribution for the signal.




Example

Want to test a new theory — Large Extra Dimensions. If this hypothesis
is correct, we expect events with certain characteristics in (let’s say)
proton-proton collisions. We design an experiment to look for this
process.

There will also be indistinguishable events from ‘known’ physics. The
analysis has been designed to reduce these, but there will be some
background left.

Background expectation: A=ogpy L -agpy

Signal expectation: v=orgDp L -arLEp

Have a nearly infinite number of collisions of protons with very small
probability to generate an event per bunch crossing: Poisson process



Example

Probabilistic model:

—A\n
e "A\"'B
P A\) =
sl = =
e~ Vymns
P —
(ns|v) ol
e Fu™
P(n|A,v) =



Example

Compare two situations:
1) no knowledge on the background

2) Separate data help us constrain the background

Suppose we measure n=7 events, what can we say ?



n=7 Poisson

B AN RO
A T A T s O

(RORARELRR LRI LR LR CALLRA SRR
R R R B ———
AR AR RR IR IR IR ———

A A A A A A A A AP RIRARR
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With Background knowledge - Bayes

P(n|lv, \)P(\)P(v)

P(v,\n) =
(v Aln) [ P(n|v, VPN P(v)drdv
“ATI A+ )" 1 -3
_ € v P()\) = e X
P(n\)\, V) — ol ( ) \/%0')\

Py(v) = constant

We solve this numerically (here with the BAT package) https://www.mpp.mpg.de/bat/

To get a probability distribution for the physics parameter, we
marginalize

P(v|n) = /P(V,)\\n)d)\



SOS

p(lambdaldata)
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SOS

lambda

20

15

10

n=7 Constrained Background

rll

smallest 99.7% interval(s)
smallest 95.5% interval(s)
smallest 68.3% interval(s)
global mode

mean and standard deviation
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p(nuldata)

SOS
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0.12

0.10
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n=7 Constrained Background

smallest 99.7% interval(s)
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Example: Double Beta Decay

One of the outstanding questions in Particle Physics is whether the neutrino is its own
antiparticle (so-called Majorana particle).

The only practical way which has been found to search for the Majorana nature of neutrinos
(particle same as antiparticle) is double beta decay (because of the light mass of neutrinos,
helicity flip is very unlikely unless the neutrinos have very low energy).

For us, what is interesting is that we are looking for a peak at a well-defined energy in a sparse
spectrum.

A. Caldwell, K. Kréninger, Phys. Rev. D 74 (2006) 092003
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Discovery or not ?
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Analyze energy spectrum and decide if there is evidence for a signal. Counting experiment —
Poisson statistics.
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Error Bars for Distributions of Numbers of Events
Ritu Aggarwal, Allen Caldwell

European Physical Journal Plus
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Exercises

1. For the following data set:

1000 s
2 In 2000 s 250

a) Plot the probability distribution for the background rate from Data set 1 only

b) Analyze the two data sets simultaneously; plot the 2D probability density for the
background and signal rates.

c) Find the 68% central credibility interval for the decay rate. If your sample had a mass of
one gram, and the isotope in the sample has an atomic mass of m,=110 gm/mole, what
is the lifetime of the isotope (value with uncertainty) ?
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Bayesian Data Analysis

and some other things

A. Caldwell
Max Planck Institute for Physics

1. Another example — fitting an energy spectrum
2. Frequentist intervals and Bayesian intervals for Poisson process
3. P-values; definitions and pitfalls
4. BAT
Ap-By=1 £

Max-Planck-Institut fiir Physik

(Werner-Heisenberg-Institut)



Example-energy spectrum

Suppose we make a measurement of an energy with a calorimeter. What
can we say about the ‘true’ value ? If we assume a flat prior, we get

1 _ (Bg—E)?
e 202

P(Eo|E) = P(E|Ep) =

2TO

The probability distribution for the true energy 1s a Gaussian centered on
the measured value. However, energy distributions often have a steep
distribution. Suppose the starting distribution was

f(Eo) oc By °
then

( )2
/ ST BSdE,

277(7



one measurement of the energy, resolution 10 GeV, measured 100 GeV
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Power for Energy Spectrum

Suppose what we are trying to extract i1s the power of the underlying
energy distribution. How would we proceed ?

Model M
Parameters A

l Theory

Distributions of
physical quantities j Data processing
9(7 1A, M)

Experiment

l Modeling of experiment
Y

Prediction of
measured quantities B
f(ZIX,9,M) D
Knowledge update

Measured quantities

In this case, assume g(Fo|A\, M) x E; A



Power example

We assume the measured values are related to the true as:

1 _ (Bg—E)?
€ 202

P(E|Ey) =

2T0

Now apply the ‘law of total probability’
P(EIN) = [ P(E|E)P(Es)dEs

And Bayes’ equation yields  P()\|E) H P(E;|N)Py(N)

PO|E)

(E Eo)2
H / E;*Ey| Py(\)

27?0



Power example

PO|E)

(E Eo)2
H / E;MEy| Py(\)

27m

Need numerical approach.
1. Either integrate numerically many many times during parameter

SCal.

2. Make a histogram of expected number of entries in measured energy
bins from your event simulation, then reweight the distribution for
different values of A and see how the agreement between expected
and measured varies (Poisson statistics). Note that this does not use

the equation above — in this case n; Number of events
NS o —v;p i in energy bin i
PEN =[] Z — 1\ '
1L v; = 1;(A)  Expectation based
1=

on A



Reweighting a Simulated Distribution

1. Generate events according to a reasonable pdf. In this case,
interested in f(Ey) x E, AL

2. Smear the true energy to account for the apparatus resolution. Can
also apply other constraints, e.g. lower thresholds on energy
measurement, etc.

1 1 2
E=Eot+s PO = = oe i)
0

O'(Eo): OJ2'E0—|-b2'E§—|—O',,%




Reweighting Simulated Spectrum

Suppose now you wanted to simulate a distribution with a different
power of A. Can give the simulated events a weight

f(Eo|\)

B0 = 5 B gen)

Statistical uncertainty (in the limit of a large number of events) behaves

\/Zw(EOZ-)?

Rule of thumb: avoid large weights (here, 1nitial A should not be too big)
and make sure you have plenty of simulated events !




Entries

SOS
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Power example

— n=>5
n=6
— n=7/
Nbins Ui T
& YU
P = I =7
1=1 v
[ J o

Assumes no
uncertainty on v,



Comparison of Bayesian Credible Intervals &
Frequentist Confidence Level Intervals

Bayesian interval from cumulative of the Posterior pdf

Neymann Classical Interval — for each value of the parameter, find set of
possible outcomes that contain at least 1-a probability. For the central
interval and Poisson distribution:

sup {ZP <a/2}

nel,. ..
Pn=0lv) >a/2 >n; =0

11



Example for v=10/3

Poisson Example

n | P(nlv) | F(nlv) | R | Fr(n|v)
0 | 0.0357 | 0.0357 | 7 0.9468
1 0.1189 0.1546 5 0.8431
2 0.1982 0.3528 2 0.4184
3 0.2202 0.5730 1 0.2202
4 0.1835 0.7565 3 0.6019
5 0.1223 0.8788 4 0.7242
§) 0.0680 | 0.9468 §] 0.9111
7 | 0.0324 | 0.9792 | 8 0.9792
8 0.0135 0.9927 9 0.9927
9 | 0.0050 | 0.9976 | 10 | 0.9976
10 | 0.0017 | 0.9993 | 11 0.9993
11 | 0.0005 0.9998 | 12 0.9998
12 | 0.0001 1.0000 | 13 1.0000




Confidence Level Calculation

We observe n events, and ask which values of v are accepted with
confidence level 1-a.. For 1- 0=0.9, central intervals:

Poisson 90% Confidence Bands




Frequentist Statistics

Poisson distribution in the presence of background, with mean A. Then
we have the same curves as for signal only, but replace v with (v+A).

Poisson 90% Confidence Bands

< 10 * Traditional approach:
T ey
o9 find limit on p, then
3 .
8l subtract A to get limit on
7L V
6,
s e limit for v improves for
Al a fixed n when we add
s background.
27 .
| * can get negative
f o limits ! For example,

0 .
0 2 4 6 8§ 10 12 14 n=0, A>3 gives v<0.
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Feldman-Cousins Confidence Levels

Imagine we have a Poisson process with known background expectation
and unknown signal. If A >3 and n = 0 then the confidence
interval for v 1s empty (or includes unphysical values).

This has led to new definitions for the Confidence Intervals. The most
popular (at least in particle physics) 1s the Feldman-Cousins
construction, where a rank 1s assigned to possible outcomes based on

_ P(alp=2+)
P(nlj2)

Where [i is the value of p that maximizes P(n|u) given the
constraints.



Concrete example: A =3.0 v =0.3

n | P(n|v) [ P(n|p) r Rank | Fr(nlv)
0 0.0357 3.0 0.050 0.717 5 0.7565
1 0.1189 3.0 0.149 0.796 4 0.7208
2 0.1982 3.0 0.224 0.885 3 0.6091
3 0.2202 3.0 0.224 0.983 1 0.2202
4 0.1835 4.0 0.195 0.941 2 0.4037
5 0.1223 5.0 0.175 0.699 6 0.8788
6 0.0680 6.0 0.161 0.422 7 0.9468
7 0.0324 7.0 0.149 0.217 8 0.9792
8 0.0135 8.0 0.140 0.096 9 0.9927
9 0.0050 9.0 0.132 0.038 10 0.9976
10 | 0.0017 | 10.0 0.125 0.014 11 0.9993
11 | 0.0005 | 11.0 0.119 0.004 12 0.9998




Poisson 90% CL Bands a la Feldman-Cousins for A=3.0
10
N

9f

87




Comparing Feldman-Cousins with Bayesian Analysis with same
background ) = 3.0 and a flat prior.

'Zz 0 7,'
—y n Atv
€ Zi:O ( Jz‘r! k
> i T

Recall: P(v|n,\) =

F(vn,A\) =1—

We will take the smallest interval with 90% credibility. I.e.,

/ P(v|n, \)dv = 0.90
P>C

We find Vdown Vup fulfilling this condition. Numerical integration.



10

Poisson 90% Credibility Intervals for A=3.0




SOS

10

Comparison Poisson 90% CI vs FC-CL A=3.0
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p-values and Goodness-of-fit

In general, we can think of quantities that summarize a ‘distance’
between the expectation and the observed. E.g., x? is such a quantity.
It is a test statistic (scalar function of the data, given the model).

T(z| M, N) Test statistic for possible data x given the model M
and parameters A

Create probability density for this quantity:

P(T(x|M,)\)) = P(x| M, )\)j—;



p-values and Goodness-of-fit

A p-value is a value of the cumulative pdf for the test statistic for some
observed value of the data, D.

If the model is correct, we expect a flat distribution for p-values
between (0,1).

dr P(x) B P(x)
dF(T) d/dx [ P(T)dT  d/dz [ P(z)dx

=1

P(F) = P(x)



p-values and Goodness-of-fit

. e p_df
o Definition: 0.06¢
{].{]5;-

Tail area

p=P(T > T(D)|M) 004
0.{]3;-
0.02}
0.01}
T A .... T
0 10 20 30 40 50 60
T(D)
pdf
- Assuming M and before data is taken: | |
p uniform in [0,1] ;
0.8¢ 1—a=0.05
: 0.6}
« Confidence level «:
0.4}
p<1l—a= reject model 02l
e P
0.0 0.2 0.4 0.6 0.8 1.0

Why do we reject the small p-values if all are equally likely ?

SOS
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Comment on reasoning behind p-values

* Need prior knowledge about pdf
alternatives

 Good model: flat p-value
P(p|My) =1

Linear scale

« Bad model: peak at p=0,
sharply falling

P(p|M;) = c;e” P | ¢; > 1

10710}

SOS 23
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Reasoning behind p-values

» Similar prior for all models P(M;) ~ P(Mj;)

- Bayes Theorem: P(M|p) ~ If(mMO)
Z’i:O P(p|Mz‘)
Small;;/ Large p
1
P(Mo|p =~ 0) ~ 74 <1 P(Mylp~1) ~1
1+ 216

Bayes Theorem gives justification to p-values
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Goodness of Fit

Use % as our test statistic. The probability distribution of 2 is known
analytically. This 1s one of the main reasons why this test statistic 1s so
popular. Strictly only applicable in limited cases (data follow Gaussian
distribution from expectation, resolutions are not parameter dependent, 1f
parameters fitted, then function needs to be linear in parameters, ...).

1 2 _
P(XQ)dX2 _ 2N/2F(N/2)6 X /2(X2)(N/2) 1dX2

['(n)=(n—1)! ninteger >0
(2n)!

['(n+1/2) = ﬁﬁ n integer > 0
"n!

SOS 25



Goodness of Fit

For a given (least-squares) fit to a set of data, a certain x? value will be
obtained. One can then look up in tables whether this value 1s reasonable
by calculating, e.g.,

RS BN
SNBRNO =N D

0.06 C N=25

0.05 ;:
P(x?) o0 E
0.02

0.01 E
0 :l || I L1111 | 1111 I L1l I L1111 ] | | | | | I L1l
0 5 10 15 20 25 30 35 40 45 50
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Warning on p-values

p-values depend critically on how you have chosen the test statistic (or
discrepancy variable). The same data set can have hugely varying p-
values resulting from different choices of the test quantity.

E.g., consider a model where we assume an exponential decay law. We

can define the following probabilities of the data:
N

1, .
Unbinned likelihood P(tlr) = H —€ ti/
i=1
Binned Poisson distribution
Vi V v; = expected events in bin j

P(t|r) = ﬁ

n; = observed events in bin |



pitfalls

—
I

—l
o

number of decays
N

—— Unbinned data
— Binned data

--------- Unbinned ML fit

III|III|III|III,'|III|III|III|I
4

e
~
~
-
~
~a
S~
~ -
-
~a
-
-
-~
~ -
.~
~aa
-
~Sean
- -,

HH\ Hd\ I HNH LI ISR LN

OO

2

SOS

10 12 14 16 18 20
t

Assumed model is
exponential. Data
actually from linearly
increasing function.
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pitfalls

We take the best fit probability as our test statistic. For the unbinned
fit |
i=1

pz/z §dt’l/d75’2...(7'*)_]\[6_21%/7* =1— P(N,N)
>

Regularized incomplete gamma
function

P(s,z) = V(s@) Jy t e dt
’ D(s) [ Ftletdl

Doesn’t depend on the data ! In fact, forlarge N, p =~ 0.5



pitfalls

The p-value from the maximum likelihood is about 0.5 |

The p-value from the binned fitis O

What happened ? The maximum likelihood quantity does not know

anything about the distribution of the events, and the result only
depends on

| N
- N Z
and the p-value only depends on N !

Lesson: make sure your test statistic is sensitive to what you want to
test | The fitting program may give you a high p-value and it could well
be that the fit function looks nothing like the data.



XZ

« Most statistics disrespect order .« *
of data, information wasted g .

 Human brain good for simple g .
problems 5 .

Example: . .
. Series of N=25 datapoints e
« Each Gaussian with mean = 0 '.. RIS ;'-'-.;....?

and variance = 1 ¢

Can we combine information about
order and magnitude of deviation?

SOS 31



Bayesians and Frequentists

Frequentists make statements of the kind:

‘Assuming the model 1s correct, this result will occur in XX% of the
experiments’

The model 1s assumed true, and estimators for the true parameters in the
model are produced from the data.

In the ‘classical’ approach, this 1s then converted to ‘assuming the model,
the bounds [a,b] will contain the true value 1n XX% of experiments
performed’ (confidence levels). Does not imply that the true value 1s 1n
the range [a,b] with probability XX !

The decision on whether to then believe the model/parameters 1s left to
the individual (subjective). The inductive part of the reasoning is left out

of the analysis.
SOS 32



Bayesians and Frequentists
Bayesians make statements of the kind:

‘the degree-of-belief in model A 1s XX (between 0,1)’

Given the new data, the degree-of-belief 1s updated using the frequencies
of possible outcomes 1n the context of the models (full set)

Credible regions are then defined: with XX% credibility, the parameter 1s
in the interval [a,b]. Note — very different from a CL.

The inductive part of the reasoning 1s built in to the analysis, and the
connection between prior beliefs and posterior beliefs is made clear.

Subjective, but the subjective element is made explicit.

SOS 33



Bayesians and Frequentists

In both approaches, work with models and frequencies of outcomes
within the model.

Many elements are the same: modeling; picking the most sensitive
variables to test the theory, ...

There 1s no right and wrong approach, but you have to understand what

you get out of each type of analysis. E.g., don’t confuse confidence
levels with probabilities, p-values with support for a model, ...

SOS 34



BAT — Software package for solving data analysis problems

Code structured on Bayes' formula for parameter estimation

e . = N
. o P(DIX,M)P(X,M
p(x, m|B) = HLA PO, M)

- P(D) J

e The idea behind BAT

« Merge common parts of every Bayesian analysis into a software package
« Provide flexible environment to phrase arbitrary problems

« Provide a set of well tested/tuned numerical algorithms and tools

« C++ based framework (flexible, modular)

o Interfaces to ROOT, Cuba, Minuit, user defined, ..

« can be downloaded from:

SOS



Parameter Estimation

The posterior pdf gives the full probability distribution for all
parameters, including all correlations — no approximations. If interested
in subset of parameters, then marginalize. E.g., for one parameter:

P(\|D, M) = / P(XN D, M)dX,;
Can calculate what you need from the posterior pdf. E.g.,

0y
Mode max {P(\i|D, M)} + probability intervals, ...

Mean of \; < X >= [ P(\i|D, M)\;d);

Median [0 P(\|D, M)dA; = 0.5

Can also perform uncertainty propagation w/o approximations

SOS 36
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The 1dea

Separate the common parts from the rest

« case specific: the model and the data

o common tools: all the rest

USER DEFINED

create model

« read-in data
MODEL . nhormalize
INDEPENDENT | . find mode / fit
(common tools) | . test the fit

marginalize wrt. one or
two parameters
compare models

provide nice output

N\

Define MODEL

. define parameters
. define likelihood
« define priors

Read DATA
. from text file, ROOT tree,
user defined (anything)

37
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Markov Chain Monte Carlo (IMCMC)

generally 1t 1s very difficult to obtain the full posterior PDF
- number of parameters can be large
- different mput data will result in a different posterior

also the visualization of the PDF in more than 3 dimensions is rather
impractical and hard to understand

usually one looks at marginalized posterior wrt. one, two or three
parameters

- aprojection of the posterior onto one (two, three) parameter
- 1Integrating all the other parameters out
- still numerically difficult

the Markov Chain Monte Carlo revolutionized the area of Bayesian
analysis

38



Markov Chain Monte Carlo

Goal of MCMC is to find a chain with (r7;)” ~pdf of interest. Sampling
according to the Markov Chain will then correspond to sampling from
the desired pdf.

Markov Chain —— @ @ @ - X NTE(X)
Random number @ U, 11d from uniform
dlst between (0,1)

Markov Chain Monte Carlo is any method producing an ergodic Markov
chain X, whose stationary distribution in the distribution of interest.

The original algorithm 1s due to Metropolis. Later generalized by
Hastings.
SOS 39



Metropolis algorithm

« In BAT implemented Metropolis algorithm

« Map positive function f{x) by random walk towards higher
probabilities

« Algorithm:

- Start at some randomly chosen x,

- Randomly generate y around x,
- If f{y) 2 fix), set x,, =y

accepted with
probability f(y)/

- If fly) <Ax), set x,, =y with probability f@)/ (i) | ff /7N Slways
- If y notaccepted, stay where you are, i.e., set x, , =x, ) !
)l ; |
- Generate new y , repeat ! : !
y X, y

For each step fill the histogram with x_

For infinite number of steps the distribution in the histogram
converges to f(x)

Exercise: try out the Metropolis
algorithm to generate a Gaussian

distribution from flat rn [0,1]
SOS 40



MCMC: an example

. . . ' log scale
« mapping an arbitrary function: Jinear scale ) ?
" wf number of T
4 2 wof- iterations g
c.g. flz)=atsin’a
_F 1000 ol
o distribution sampled by MCMC 1n this E
case quickly converges towards the we 1] Jk
: e d S B B TR R
underlying distribution = 10 z |
= : = 105;—
. mapping of complicated shapes with of :
multiple minima and maxima “h “E
402 10:;_
o Lorad ety ) 0 b b e b
2 4 6 8 10 12 14 16 18 0
Note: Booock Z ok
« MCMC has to become stationary to o
sample from underlying distribution 1000000 “E
« 1n general the convergence is a non- ‘ |
triVial prOblem 1000:?.” NIV v WY, SUTHLY. SUTIL! PR 1E'..l-.lrllr.l.l.|...||...|.. Lov il

X X
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Analysis of Markov Chain

o the full chain(s) can be stored for further analysis and parameter
tuning as ROOT TTree(s)

- allows direct usage of standard ROOT tools for analysis

« Markov Chain contains the complete information about the posterior
(except for the normalization)

~0.2
o r

convergence reached - par0 vs. par1
J 015 for every

iteration

parQ vs. iteration 0.1f—

0.05] Ty

-0.05

0.1F

-0.15

o
IIII|IIII|I][I|IIII|IIII|IIIIIIIII|IIII

-
-
o
= F
b
-
(=]

0 - - - -
iteration p0
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Obtaining marginalized distributions from TTree

root[1l1l] chain0O -> Draw(“par0”) RO0

Entrles 1.4e+07
Mean 0.7578
RMS 0.297

N
NN

III|III|IIIIIII|III|III|III|III|III|III|III|II

p(pOldata)

18
1.6
14

) 2

0.8
0.6
0.4
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o
IIIIIIIIIlIIIIIIIII|IIII|IIII|IIII|IIII
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-
w
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.
-
o
o
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]
w
N
'
-
-
N
w
£

_10°
iteration p0
. h01_0
root[12] chainO -> Draw(“parO:parl”) Entes  1.4e+07
+0.2 ——|Meanx 0.7578
= Meany  -0.01349
RMS X 0.207 250
RMSy 001212

0.15 0.15

0.1 0.1

200
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50
-0.15
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Using the Markov Chain

Once you have the chain, 1t 1s stmple to calculate quantities of interest.
Chain is {A, A2, ), 1=1,N
E.g., pdf for one parameter: just plot ~ {A;}, joint {X;, Agx}.

N

- 1
Expectation value of a function E[f(\)| = N Z S TTR Wy
i=1

Probability distribution of your function: just plot {f(A1,...,A\n)},

1

SOS



