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Introduction to BAT
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Aims and scope of BAT

● Aims

● Provide a flexible and modular framework for statistical models in 
context of Bayesian interpretation

● Provide a set of (mostly numerical) methods to solve data-analysis 
problems
(parameter estimation, limit setting, model comparison, goodness-of-fit tests, etc.)

● Scope

● Developed in experimental particle-physics community
(explains choice of C++ and ROOT-dependence)

● Extended to other fields of research
(phenomenology, medicine, astroparticle physics, etc.)
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Requirements and solutions

● Requirements and solutions:

● Requirement: phrase arbitrary models and use data sets

● C++ library based on ROOT

● Models inherit from base classes 

● Easy to interface to any existing code
(interesting for complex fitting, e.g., fits of CKM matrix, cosmological parameters)

● Requirement: perform data analysis tasks

● Graphical output via ROOT core functionality

● Point estimation done using Minuit and Simulated Annealing

● Interval estimation and uncertainty propagation done using MCMC

● Model comparison via Bayes factors or evidence calculation using 
interface to Cuba
(Cuba is a collection of integration methods, e.g., VEGAS)
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Implementation

Define MODEL
● define parameters
● define likelihood
● define priors

p D ∣

p0



Read DATA
● from text file, ROOT tree,

user-defined (anything)
● interface to user-defined

software

USER DEFINED

COMMON 
METHODS 

p ∣ D  =
p  D ∣ p0

∫ p D ∣ p0 d 

● define model
● read data

● normalize
● find mode / fit
● test the fit
● marginalize wrt. 

several parameters
● compare models
● provide nice output

Focus today:
Usage of MCMC in Bayesian inference
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Implementation

● Usage of MCMC in Bayesian 
inference

● Use MCMC to sample the 
posterior probability, i.e.

● Marginalization of posterior:

● Fill a histogram with just one 
coordinate while sampling

● Uncertainty propagation: calculate 
any function of the parameters 
while sampling

● Point estimate: find mode while 
sampling

marginalized distributions
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MCMC in BAT

● Step 1: Starting values

● Either random within parameter space (default)

● or center of each dimension

● or user-defined

● Step 2: Burn-in phase

● Use multiple chains (default: 5)

● Run until convergence is reached and chains are efficient

● Convergence is reached if inter- and intra-chain variance are equal 
(Gelman and Rubin criterion)
(Gelman & Rubin, StatSci 7, 1992)

● Chains are efficient if the efficiency is between 15% and 50%

● Run in sequences to adjust the width of the proposal functions:

● If efficiency > 50%: increase the width

● If efficiency < 15%: decrease the width
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MCMC in BAT

● Step 3: Main run

● Fix width of proposal function to that obtained from efficiency 
optimization and convergence tests
(always fixed during the main run)

● Run for a specified number of iterations

● Perform analysis-specific calculations
(fill marginalized histograms, uncertainty propagation, fill ROOT tree, etc.)

● Store information of every nth iteration
(reduce auto-correlation)

Starting values

Burn-in phase
Main run
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Output – marginalized 1D distributions

● Output

● Marginal distributions: 
projection of  posterior onto 
one or two parameter axes  

● Full (correlated) information 
in Markov Chain written as 
ROOT tree

● Default text output:

● Mean ± std. deviation

● Median and central interval

● Mode and smallest 
intervals(s)

● Important quantiles

● Global mode
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Output – marginalized 2D distributions
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Output – update of knowledge
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Output – update of knowledge
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Example use cases

● Quentin Buat, Search for extra dimensions in the 
diphoton final state with ATLAS [arXiv:1201.4748]

● ATLAS collaboration, Search for excited leptons in 
proton-proton collisions at sqrt(s) = 7 TeV with the 
ATLAS detector [arXiv:1201.3293]

● I. Abt et al., Measurement of the temperature 
dependence of pulse lengths in an n-type germanium 
detector, Eur. Phys. J. Appl. Phys.56:10104,2011 
[arXiv:1112.5033]

● ATLAS collaboration, Search for Extra Dimensions 
using diphoton events in 7 TeV proton-proton collisions 
with the ATLAS detector [arXiv:1112.2194]

● ATLAS collaboration, A measurement of the ratio of 
the W and Z cross sections with exactly one associated 
jet in pp collisions at sqrt(s) = 7 TeV with ATLAS, 
Phys.Lett.B708:221-240,2012 [arXiv:1108.4908]

●ZEUS collaboration, Search for single-top production in 
ep collisions at HERA, Phys.Lett.B708:27-36,2012 
[arXiv:1111.3901]

● CMS collaboration, Search for a W’ boson decaying to 
a muon and a neutrino in pp collisions at sqrt(s) = 7 
TeV, Phys.Lett.B701:160-179,2011 [arXiv:1103.0030]

● ZEUS collaboration, Measurement of the Longitudinal 
Proton Structure Function at HERA, Phys.Lett.B682:8-
22,2009 [arXiv:0904.1092]
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Contact

● Contact

● Web page: http://www.mppmu.mpg.de/bat/

● Contact: bat@mppmu.mpg.de

● Paper on BAT: 

● A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit
Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552]



The tutorial
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Preface

● Setup

● BAT is installed on the NAF, no need to install it locally

● Use your account to ssh into the NAF

● Help

● Ask us directly (Dan, Fred, Kevin)

● Check the reference guide on the web page:
https://www.mppmu.mpg.de/bat/docs/refman/html-0.9.3/

● Check the examples in the BAT release

https://www.mppmu.mpg.de/bat/docs/refman/html-0.9.3/


The Bayesian Analysis Toolkit – 20.11.2013 Kevin Kröninger 17

BAT on the NAF

● Setting up BAT

● ssh schoolNN@naf-school01.desy.de

● cd /afs/desy.de/group/school/mc-school/bat/tutorial

● source setup_bat.sh

● Getting started with BAT

● Create your own working directory and cd into it

● cp /afs/desy.de/group/school/mc-school/bat/BAT-
0.9.3/tools/CreateProject.sh .

● ./CreateProject.sh  <project> [<model>]

 

● BAT examples

● Examples can be found in the directory
/afs/desy.de/group/school/mc-school/bat/BAT-0.9.3/examples
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The physics case

● Physics case

● Counting experiment: searching for signal ν
s
 in presence of background 

● Expect ν
b
 = 10 ± 3 background events, observe n = 10 events

● Later: limit on cross-section σ with efficiency of ε=0.1 ± 0.02 (assume 
luminosity to be L=1):

● The tutorial

● Exercise 1: getting started; fix background to expected value

● Exercise 2: assume not-so-well-known background

● Exercise 3: update of knowledge

● Exercise 4: propagation of uncertainty

● Exercise 5: choice of priors (optional)

● Exercise 6: evidence calculation and model comparison (optional)

=
s
⋅L
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Exercise 1

● Implementing a first model

● Run the CreateProject.sh script
This generates the BAT model files (.cxx and .h), a run file and a Makefile

● Modifications to your model file:

● Add a signal parameter to the model
Use BCModel::AddParameter(...), consider an appropriate choice of the range

● Define the likelihood to be a Poisson, assume the number of background 
events to be fixed to 10.
Use BCMath::LogPoisson(...)

● Define a uniform prior for the signal parameter

● Modifications to your run file:

● Choose the Metropolis algorithm and marginalize:
Use BCModel::SetMarginalizationMethod(BCIntegrate::kMargMetropolis)
and  BCModel::MarginalizeAll()
Print using BCModel::PrintAllMarginalized(...) and BCModel::PrintResults(...)

● Make and run the program. Investigate the plots and numbers.
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Solution 1

● Plot:

● Numbers:

● 90% upper limit on signal: 6.59

● 95% upper limit on signal: 8.02
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Exercise 2

● Not-so-well-known background

● Modifications to your model file:

● Add a background parameter to the model
Use BCModel::AddParameter(...), consider an appropriate choice of the range

● Define the likelihood to be a Poisson, the number of expected events is 
now a function of the two parameters

● Define a Gaussian prior for the background parameter with mean 10 and 
standard deviation 3.

● Re-run the program and investigate the changes
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Solution 2

● Plots:

● Numbers:

● 90% upper limit on signal: 8.26

● 95% upper limit on signal: 9.90
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Exercise 3

● Update-of-knowledge

● Modifications to your run file:

● Include an instance of the BCSummaryTool
Check the reference guide for how to use the tool:
https://www.mppmu.mpg.de/bat/docs/refman/html-0.9.3/

● Print and study the knowledge update plot. How did your knowledge 
increase?
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Solution 3

● Plots:
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Exercise 4

● Propagation of uncertainty

● Modifications to your model file:

● Add a method that is called for each sample: 
void MyModel::MCMCUserIterationInterface() {

  int nchains = MCMCGetNChains();
int npar = GetNParameters();
for (int i = 0; i < nchains; ++i) {

double x = fMCMCx.at(i * npar + 0);
double y = fMCMCx.at(i * npar + 1);
double z = fMCMCx.at(i * npar + 2);
MyHistogram->Fill(x/z);

}

}

● Add a BCH1D Histogram to the .h file and fill it for each sample

● Add a parameter for the efficiency with a Gaussian prior with mean 0.1 
and standard deviation 0.02

● Modifications to your run file

● Get the histogram from the model and print the histograms

● What is the 95% limit you can set on the cross-section?
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Solution 4

● Plots:

● Numbers:

● 90% upper limit on cross-section: 86.76

● 95% upper limit on cross-section: 106.16
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Exercise 5

● Priors, priors, priors

● Repeat your analysis with different priors, e.g. and expontential one, a 

Gaussian one or a Jeffreys prior

● How does the limit on the signal and the cross-section change?
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Exercise 6

● Model comparison and evidence calculation

● Modifications to your run file:

● Choose an integration method
Use BCModel::SetIntegrationMethod(...)

● Run the integration
Use BCModel::Normalize()

● Repeat your studies for the signal fixed to 0 and compare the two 
evidences. Which model is more likely?



Backup material
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