

The Bayesian Analysis Toolkit a C++ tool for Bayesian inference

Kevin Kröninger – University of Göttingen / University of Siegen

Bayes Forum, Munich, 13.04.2012

The BAT (wo)men: Frederik Beaujean, Allen Caldwell, Daniel Greenwald, Daniel Kollar, Kevin Kröninger, Shabnaz Pashapour, Arnulf Quadt

Motivation

The Bayesian Analysis toolkit

Bayes Forum, Munich, 13.04.2012

Run 190059 Evt 49300403 Sat Mar 6 11:15:43 2004

Experiment

Data analysis

Theory

Questions in data analysis:

- What does the data tell us about our model?
- Which model is favored by the data?
- Is the model compatible with the data?

Need methods and tools to extract information

Parameter estimation Model comparison Goodness-of-fit test

The Bayesian Analysis toolkit

Outline:

- Requirements / Implementation / Tools
- Markov Chain Monte Carlo
- MCMC implementation in BAT
- A working example
- Some propaganda
- Summary

Requirements and solutions

Requirements:

- Allow to phrase arbitrary models and data sets
- Interface to (HEP) software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:

- C++ library based on ROOT*.
- Models are implemented as (base) classes and need to be defined by the user, or
- A set of pre-defined models can be used.
- A set of algorithms can used to perform the actual analysis

*Framework for handling large data sets, graphical representation and analysis tools

Requirements and solutions

Requirements:

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:

- Minimization can be done via a Minuit interface or via Simulated Annealing.
- Marginalization and uncertainty estimation can be done via Markov Chain Monte Carlo (MCMC).
- Propagation of uncertainties (without Gaussian assumptions) can also be done via MCMC

Requirements and solutions

Requirements:

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:

- Direct comparison of model probabilities (Bayes factors)
- Integration methods from Cuba* library linked
- Perform *p*-value tests

*A collection of numerical integration methods e.g., VEGAS

 $p_0(\vec{\lambda})$

Bayes Forum, Munich, 13.04.2012

Tools:

- Point estimates:
 - Minuit
 - Simulated Annealing
 - MCMC
 - simple Monte Carlo
- Marginalization:
 - MCMC
 - simple Monte Carlo
- Integration:
 - sampled mean
 - importance sampling
 - CUBA (Vega, Suave, Divonne, Cuhre)

- Sampling:
 - simple Monte Carlo
 - MCMC
- Error propagation
 - MCMC

Markov Chain Monte Carlo

The Bayesian Analysis toolkit

How does MCMC work?

- Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).
- Sampling large dimensional functions is difficult.
- Idea: use random walk heading towards region of larger values (probabilities)
- Metropolis algorithm
 - N. Metropolis et al.,
 - J. Chem. Phys. 21 (1953) 1087.

- Start at some randomly chosen x_i
- Randomly generate y around x_{i}
- If $f(y) > f(x_i) \text{ set } x_{i+1} = y$
- If $f(y) < f(x_i)$ set $x_{i+1} = y$ with prob. $p=f(y)/f(x_i)$
- If y is not accepted set $x_{i+1} = x_i$
- Start over

Does it work for difficult functions?

• Test MCMC on a function:

 $f(x) = x^4 \sin(x^2)$

- Compare MCMC distribution to analytic function
- Several minima/maxima are no problem.
- Different orders of magnitude are no problem.

The Bayesian Analysis toolkit

How does MCMC help in Bayesian inference?

 Use MCMC to sample the posterior probability, i.e.

 $\boldsymbol{f}(\vec{\lambda}) = \boldsymbol{p}(\vec{D} \mid \vec{\lambda}) \, \boldsymbol{p}_0(\vec{\lambda})$

Marginalization of posterior:

 $\boldsymbol{p}(\lambda_i \,|\, \vec{\boldsymbol{D}}) = \int \boldsymbol{p}(\vec{\boldsymbol{D}} \,|\, \vec{\lambda}) \, \boldsymbol{p}_0(\vec{\lambda}) \boldsymbol{d} \, \vec{\lambda}_{j \neq i}$

- Fill a histogram with just one coordinate while sampling
- Error propagation: calculate any function of the parameters while sampling
- Point estimate: find mode while sampling

Metropolis is ~3 lines of code, fairly easy, but ...

Technical details:

- How are the new points generated?
- How many points can we afford to throw away? Efficiency
- How many iterations do we need?
- How correlated are the points?

Proposal function

Convergence criterion

Auto-correlation/lag

Bayes Forum, Munich, 13.04.2012

How are the new points generated?

- Proposal function: probability density of the step size used in the random walk
- Should be independent of the underlying distribution, i.e., the same everywhere
- Shape is important (default: Breit-Wigner)
- Width defines efficiency = fraction of accepted points

- Small width = large efficiency
- Large width = small efficiency
- Trade off: efficiency ~25%

The Bayesian Analysis toolkit

How many iterations do we need?

• MCMC distribution should converge to underlying function.

Bayes Forum, Munich, 13.04.2012

- In practice: need to stop the chain at some point. Need criteria.
- Two strategies:
- Single chain convergence:
 - Could monitor auto-correlation
 - Very CPU-time intensive
 - Could be done offline
- Multi-chain convergence:
 - Test convergence of multiple chains wrt each other
 - Use Gelman&Rubin criterion

Gelman & Rubin convergence:

Calculate average variance of all chains

$$W = \frac{1}{m} \frac{1}{n-1} \sum_{j=1}^{m} \sum_{i=1}^{n} (x_i - \bar{x}_j)^2$$

Estimate variance of target distribution

$$\hat{V} = (1 - \frac{1}{n})W + \frac{1}{m - 1}\sum_{j=1}^{m} (\bar{x}_j - \bar{x})^2$$

 Calculate ratio and compare with stopping criterion (relaxed version):

$$r = \sqrt{\frac{\hat{V}}{W}} < 1.x (x = 0.1 \text{ default})$$

Gelman & Rubin, StatSci 7, 1992

How correlated are the points?

- Simple Monte Carlo sampling and "unbiased" random walk create sets of points without (auto-correlation) while MCMC algorithm can cause auto-correlation, e.g., when rejecting a point (since the old one is taken again)
- Size of the correlation depends on the underlying posterior and the proposal function
- Can thin the MCMC sample by introducing a lag, i.e., take only every *n*th point to calculate the marginalized distributions
- Cost: need to run a factor of *n* longer to get the same stat. precision

Auto-correlation and lag

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

Phrasing the problem:

- Estimate signal strength of Gaussian signal on top of flat background
- Data generated with the following settings:
 - Gaussian signal:
 - position $\mu = 2039 \text{ keV}$
 - width $\sigma = 5 \text{ keV}$
 - strength <S> = 100
 - Flat background:
 - strength = 3/keV
- Number of events per bin fluctuate with Poisson distribution

Statistical modeling:

- Statistical model:
 - Gaussian signal on top of flat background
 - 4 fit parameters:
 - Gaussian signal (3)
 - Flat background (1)
- Prior knowledge:
 - Background: 300 ± 20 in 100 keV (e.g., from sideband analysis)
 - Signal strength: exponentially decreasing (e.g., theoretical intuition)
 - Signal position: flat (e.g., no idea about the mass of a resonance)
 - Signal width: $5 \pm 1 \text{ keV}$ (detector resolution)
 - Signal and background efficiency fixed to 1 (in this example)

The Bayesian Analysis toolkit

A working example

Statistical modeling:

- Likelihood:
 - Binned data
 - Number of expected events per bin:

$$\lambda_i = \int_{\Delta x_i} \frac{S}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx + \frac{0.01 \cdot B}{\Delta x_i}$$

- Assume independent Poisson fluctuations in each bin
- Likelihood:

$$p(D|S,\mu,\sigma,B) = \prod_{i=1}^{N_{bins}} \frac{\lambda_i^{n_i}}{n_i}!e^{-\lambda_i}$$

Marginalized distributions:

- Project posterior onto one parameter axis
- Global mode and mode of marginalized distributions do not have to coincide
- Full (correlated) information in Markov Chain
- Default output:
 - Mean \pm std. deviation
 - Median and central int.
 - Mode and smallest int.
- All 1-D and 2-D distributions are written out during main run

An example: 2D distributions

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

Poculte of the marginalization

An example: the summary

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

List of parameters and p	properties of the marginalized					
distributions:						
(0) Parameter "Backgr	ound":					
Mean +- sqrt(V):	282.2 +- 13.04					
Median +- central 68	% interval: 282.1 + 13.11 - 12.92					
(Marginalized) mode	: 281					
5% quantile:	260.8					
10% quantile:	265.5					
16% quantile:	269.2					
84% quantile:	295.7					
90% quantile:	299					
95% quantile:	303.8					
Smallest interval(s) of	containing 68% and local modes:					
(268, 298) (local mo	de at 281 with rel. height 1; rel. area 0.7169					
(2) Parameter "Signal":						
Mean +- sqrt(V):	83.59 +- 11.09					
Median +- central 68	% interval: 83.28 + 11.35 - 10.73					
(Marginalized) mode	: 83					
5% quantile:	65.85					
10% quantile:	69.55					
16% quantile:	72.55					
84% quantile:	95.13					
90% quantile:	97.99					
95% quantile:	102.4					
Smallest interval(s) of	containing 68% and local modes:					
(72, 96) (local mode	at 83 with rel. height 1; rel. area 0.6806)					

4) Parameter "Signal ma	SS":	
	Mean +- sqrt(V):	2038	+- 0.8009
	Median +- central 68%	interval:	2038 + 0.7945 - 0.7922
	(Marginalized) mode:	203	8
	5% quantile:	2037	
	10% quantile:	2037	
	16% quantile:	2037	
	84% quantile:	2039	
	90% quantile:	2039	
	95% quantile:	2039	
	Smallest interval(s) cor	ntaining 6	8% and local modes:
	(2037, 2039) (local mo	de at 203	88 with rel. height 1; rel. area 0.6844)

Results of the optimization

Optimization algorithm used:Metropolis MCMC List of parameters and global mode: (0) Parameter "Background": 22.68% (2) Parameter "Signal": 19.76% (4) Parameter "Signal mass": 23.64% (5) Parameter "Signal width": 19.82%

Status of the MCMC

Convergence reached:

Convergence reached:yesNumber of iterations until convergence: 24000Number of chains:10Number of iterations per chain:10000000Average efficiencies:(0) Parameter "Background": 20.03%(2) Parameter "Signal": 17.35%(4) Parameter "Signal mass": 24.52%(5) Parameter "Signal width": 19.56%

An example: the summary

Bayes Forum, Munich, 13.04.2012

An example: correlation

The Bayesian Analysis toolkit

5

-0.13

-4.1e-05

-0.13

-0.0001

0.047

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Bayes Forum, Munich, 13.04.2012

BackgEddircieIncy_BackgrochigInalEfficiency_SigStingInal massSignal width

An example: knowledge update

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

Published use cases

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

• Quentin Buat, Search for extra dimensions in the diphoton final state with ATLAS [arXiv:1201.4748]

• ATLAS collaboration, Search for excited leptons in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector [arXiv:1201.3293]

• I. Abt *et al.*, *Measurement of the temperature dependence of pulse lengths in an n-type germanium detector*, Eur. Phys. J. Appl. Phys.56:10104,2011 [arXiv:1112.5033]

• ATLAS collaboration, Search for Extra Dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector [arXiv:1112.2194] • ATLAS collaboration, A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at sqrt(s) = 7 TeV with ATLAS, Phys.Lett.B708:221-240,2012 [arXiv:1108.4908]

•ZEUS collaboration, *Search for single-top production in ep collisions at HERA*, Phys.Lett.B708:27-36,2012 [arXiv:1111.3901]

• CMS collaboration, Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV, Phys.Lett.B701:160-179,2011 [arXiv:1103.0030]

• ZEUS collaboration, *Measurement of the Longitudinal Proton Structure Function at HERA,* Phys.Lett.B682:8-22,2009 [arXiv:0904.1092]

The Bayesian Analysis toolkit

BAT	Bayesian Analysis Toolkit → download					
home	Download					
download	Latest version: 0.4.3 (development)					
documentation	Urgency: low					
reference guide	Release date: 21.06.2011					
performance	Source and a: BAT-0.4.2 tor gz (770kB)					
meetings	Source code: BAT-U.4.3.tar.gz (770KB)					
contact	installation instructions reference guide changelog known issues performance testing					

Contact:

- Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552].

|

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

BAT	Bayesian Analysis Toolkit → <u>tutorials</u>			license contact Last updated: February 21st, 2011			
home	BAT Tutorials						
download	The tutorials are intended for the latest version of BAT (unless stated otherwise). However, after a new release they may need some adjustment to work.						
documentation	We try to do the necessary adjustments shortly after the release.						
reference guide	Title	Category	Level				
performance	Mesuring a decay rate	counting experiment	basic				
meetings	Estimating trigger efficiencies	fitting	basic				
contact	Charged current cross-section analysis	limit setting	basic				
-	Signal search in the presence of background	hypothesis testing, template fitting	intermediate				
	Combination of cross-sections	combination	intermediate				

Tutorials:

• Set of tutorials on the web page for first steps, including solutions

The Bayesian Analysis toolkit

Warrant

Current projects:

- BAT version v1.0
- ROOT-less version > v1.0
- Parallelization
- Graphical representation of uncertainty bands as in Eur. Phys. J. Plus 127 (2012) 24 [arXiv:1112.2593]

Warrant:

- If you are interested joining the effort, please get in touch with us
- Also have (Bsc./MSc.) thesis projects to offer

Summary:

- Bayesian inference requires some computational effort (e.g., nuisance parameters)
- Markov Chain Monte Carlo is the key tool to solve these issues
- BAT is a tool to combine Bayesian inference with MCMC
- Toolbox with more algorithms (integration, optimization, etc.)
- C++ library, modular, easy to use
- Informative output with predefined plots, numbers, etc.
- Did not talk about hypothesis testing and goodness-of-fit, p-values, Bayes factors, information criteria
- Upgrade of BAT ongoing, more to come
- Participation and feedback are always welcome

What exactly is being done in BAT?

- Step 1: Starting points
 - Random within parameter space (default)
 - Center of each dimension
 - User-defined
- Step 2: Burn-in
 - Use multiple chains (default: 5)
 - Run until convergence is reached and chains are efficient
 - Or run until the maximum number of iterations is reached
 - Chains are efficient if the efficiency is between 15% and 50%
 - Run in sequences to adjust the width of the proposal functions:
 - If efficiency > 50%: increase the width
 - If efficiency < 15%: decrease the width

What exactly is being done in BAT?

- Step 3: Main run
 - Use width obtained from efficiency optimization and convergence (fixed)
 - Run for a specified number of iterations
 - Perform analysis-specific calculations (next slide)
 - Store information of every nth iteration (consider lag)

What is done in each step?

- Marginalization:
 - Fill 1-D and 2-D histograms
 - Large number: $N \cdot (N+1)/2$, e.g., for N=50 there are 1275 histograms
 - Individual histograms can be switched on/off
- Optimization:
 - Search for maximum of posterior
 - Not precise, but helpful as starting point for other algorithms
- Error propagation:
 - Calculate arbitrary (user-defined) functions from parameters
- Misc:
 - Write points to ROOT tree for offline analysis
 - Perform any user-defined analysis, histogram filling, etc.

An example: error propagation

Bayes Forum, Munich, 13.04.2012

The Bayesian Analysis toolkit

E [keV]