

# An Introduction to BAT

BAT Workshop Bologna 2011 February 24<sup>th</sup> - 25<sup>th</sup> 2011









Kevin Kröninger University of Göttingen

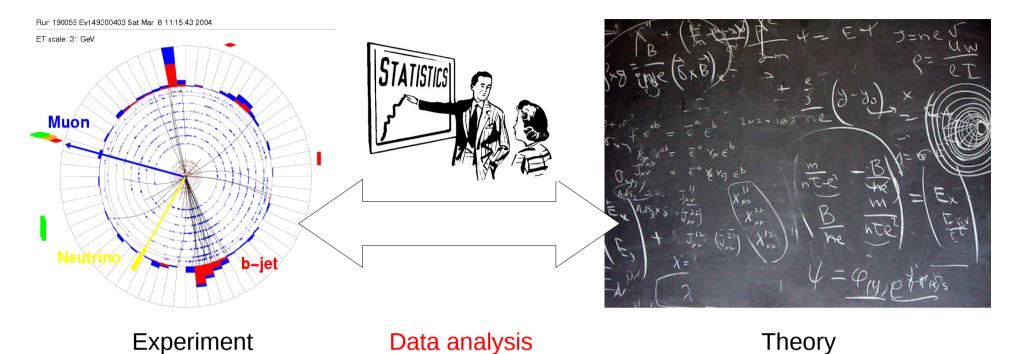
for the



Frederik Beaujean, Allen Caldwell, Daniel Kollar, Kevin Kröninger, Shabnaz Pashapour, Arnulf Quadt

Motivation • BAT overview • MCMC • A working example • this course • summary





# **Questions in data analysis:**

- What does the data tell us about our model?
- Which model is favored by the data?
- Is the model compatible with the data?

Need methods and tools to extract information:

$$p(\vec{\lambda} \mid \vec{D}) = \frac{p(\vec{D} \mid \vec{\lambda}) \, p_0(\vec{\lambda})}{\int p(\vec{D} \mid \vec{\lambda}) \, p_0(\vec{\lambda}) \, d\vec{\lambda}}$$

Parameter estimation Model comparison Goodness-of-fit test





## **Requirements**

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

# **Implementation**:

- C++ library based on ROOT.
- Models are implemented as base classes and need to be defined by the user, or
- A set of of pre-defined models can be used.
- A set of algorithms can used to perform the actual analysis



# <u>Requirements</u>

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

## <u>Implementation:</u>

- Minimization can be done via a Minuit interface or via Simulated Annealing.
- Marginalization and uncertainty estimation can be done via Markov Chain Monte Carlo (MCMC).
- Propagation of uncertainties (without Gaussian assumptions) can also be done via MCMC



## **Requirements**

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

# **Implementation**:

- Direct comparison of model probabilities (Bayes factors)
- Integration methods from Cuba library linked
- Possibilities to do p-value tests



#### **USER DEFINED**

- create model
- read-in data

# MODEL<br/>INDEPENDENT<br/>(common tools)

- normalize
- find mode / fit
- test the fit
- marginalize wrt. one or two parameters
- compare models
- provide nice output

#### **Define MODEL**

- define parameters  $\vec{\lambda}$
- define likelihood  $p(\vec{D} | \vec{\lambda})$
- define priors

#### $p_0(\vec{\lambda})$

#### **Read DATA**

 from text file, ROOT tree, user defined (anything)

$$p(\vec{\lambda} \mid \vec{D}) = \frac{p(\vec{D} \mid \vec{\lambda}) \ p_0(\vec{\lambda})}{\int p(\vec{D} \mid \vec{\lambda}) \ p_0(\vec{\lambda}) \ d\vec{\lambda}}$$



#### Tools:

- Point estimates:
  - Minuit
  - Simulated Annealing
  - MCMC
  - simple Monte Carlo
- Marginalization:
  - MCMC
  - simple Monte Carlo
- Integration:
  - sampled mean
  - importance sampling
  - CUBA (Vega, Suave, Divonne, Cuhre)

- Sampling:
  - simple Monte Carlo
  - MCMC



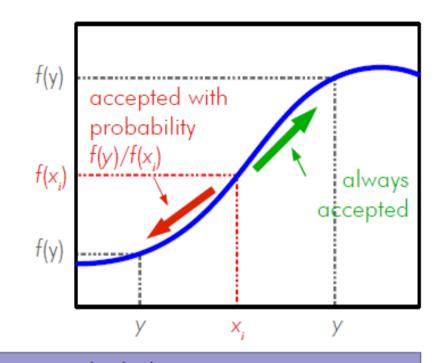
# **How does MCMC work?**

- Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).
- Sampling large dimensional functions is difficult.

 Idea: use random walk heading towards region of larger values

(probabilities)

Metropolis algorithm:



- Start at some randomly chosen x<sub>i</sub>
- Randomly generate y around x<sub>i</sub>

- If 
$$f(y) \ge f(x_i)$$
, set  $x_{i+1} = y$ 

- If 
$$f(y) < f(x_i)$$
, set  $x_{i+1} = y$  with probability  $p = \frac{f(y)}{f(x_i)}$ 

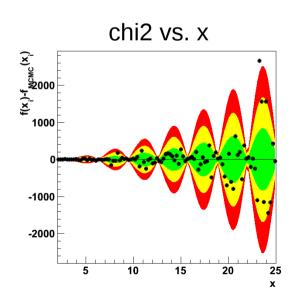
- If y not accepted, stay where you are, i.e., set  $x_{i+1} = x_i$
- Start over

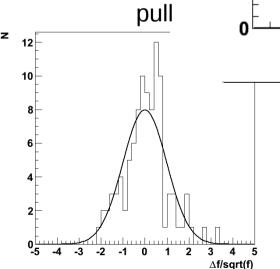
N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087.

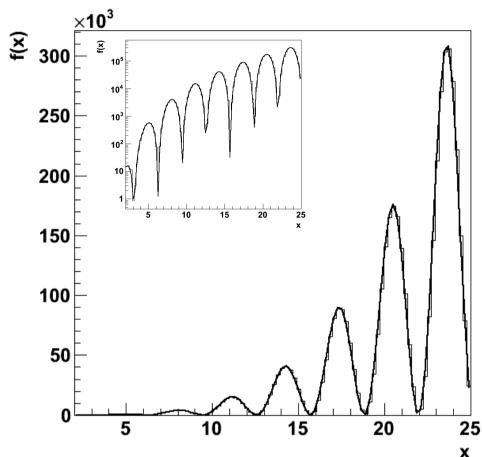


# Does it work for difficult functions?

- Test MCMC on a function:  $f(x) = x^4 \cdot \sin(x^2)$
- Compare MCMC distribution to analytic function
- Several minima/maxima are no problem.
- Different orders of magnitude are no problem.







For more examples, see our test suite on the BAT web page.



# How does MCMC help in Bayesian inference?

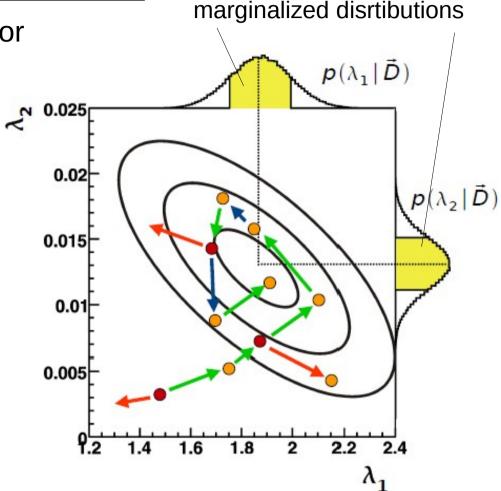
 Use MCMC to sample the posterior probability, i.e.

$$f(\vec{\lambda}) = p(\vec{D} \mid \vec{\lambda}) p_0(\vec{\lambda})$$

Marginalization of posterior:

$$p(\lambda_i \mid \vec{D}) = \int p(\vec{D} \mid \vec{\lambda}) \, p_0(\vec{\lambda}) \, d\vec{\lambda}_{j \neq i}$$

- Fill a histogram with just one coordinate while sampling
- Error propagation: calculate any function of the parameters while sampling
- Point estimate: find mode while sampling





Metropolis is ~3 lines of code, fairly easy, but ...

## **Technical details:**

- How are the new points generated?
- How many points can I afford to throw away?
- How many iterations do we need?
- How correlated are the points?

**Proposal function** 

Efficiency

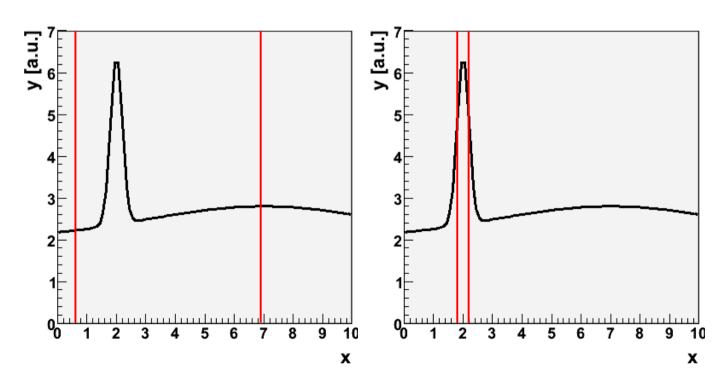
Convergence criterion

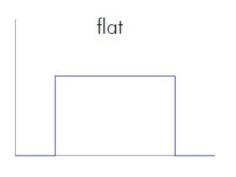
Auto-correlation/lag

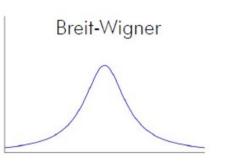


# How are the new points generated?

- Proposal function: probability density for taking one step during the random walk
- Should be independent of the underlying distribution,
  i.e., the same everywhere
- Shape is important (default: Breit-Wigner)
- Width defines efficiency = fraction of accepted points







- Small width = large efficiency
- Large width = small efficiency
- Trade off: efficiency ~25%



# How many iterations do we need?

- MCMC distribution should converge asymptotically to underlying function.
- In practice: need to stop the chain at some point. Need criteria.
- Two strategies:
  - Single chain convergence
  - Multi-chain convergence
- Single chain convergence:
  - Could monitor auto-correlation
  - Very CPU-time intensive
  - Could be done offline
- Multi-chain convergence:
  - Test convergence of multiple chains to each other
  - Use Gelman&Rubin criterion

#### **Gelman & Rubin convergence:**

Calculate average variance of all chains

$$W = \frac{1}{m} \frac{1}{n-1} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_i - \bar{x}_j)^2$$

Estimate variance of target distribution

$$\hat{V} = (1 - \frac{1}{n})W + \frac{1}{m - 1} \sum_{j=1}^{m} (\bar{x}_j - \bar{x})^2$$

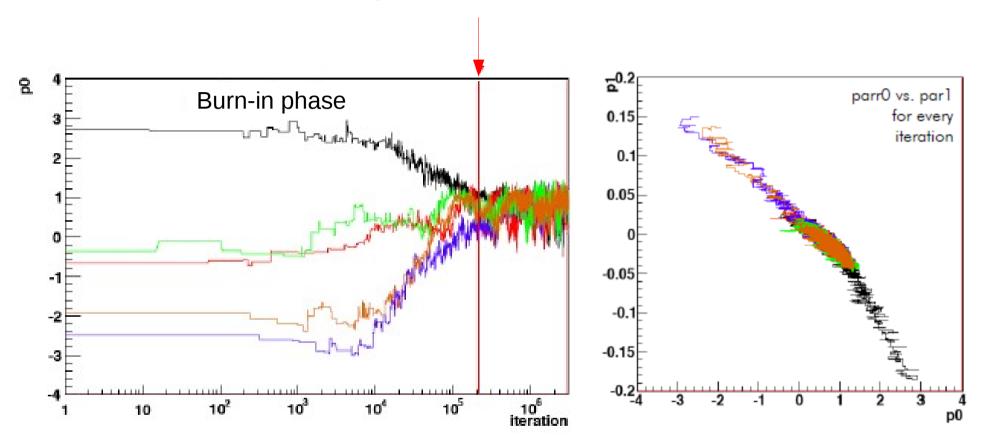
 Calculate ratio and compare with stopping criterion (relaxed version):

$$r = \sqrt{\frac{\hat{V}}{W}} < 1.x \text{ (x = 0.1 default)}$$

Gelman&Rubin, StatSci 7, 1992



#### Convergence a la Gelman & Rubin



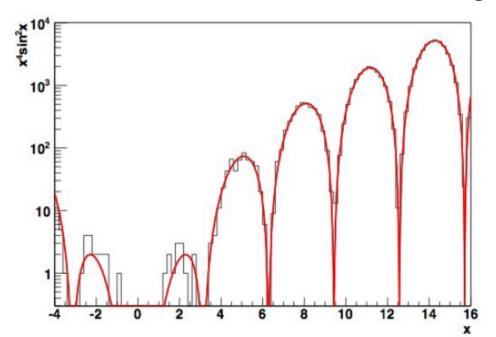
Parameter value vs. iteration

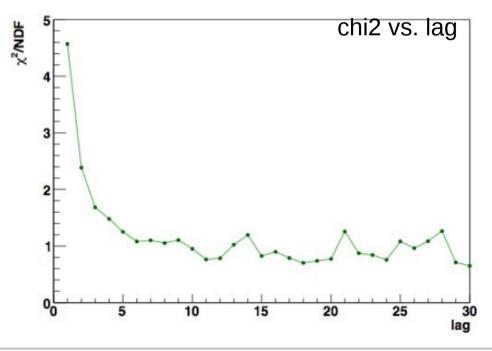
Parameter 1 vs parameter 0



# How correlated are the points?

- True Monte Carlo and random walk create sets of points without (auto-correlation) while MCMC algorithm can cause auto-correlation, e.g., when rejecting a point (since the old one is taken again)
- Size of the correlation depends on the underlying posterior and the proposal function
- Can thin the MCMC sample by introducing a lag, i.e., take only every  $n^{th}$  point to calculate the marginalized distributions
- Cost: need to run a factor of *n* longer to get the same stat. precision







# What exactly is being done in BAT?

- Step 1: Starting points
  - Random within parameter space (default)
  - Center or user defined
- Step 2: Burn-in
  - Use multiple chains (default: 5)
  - Run until convergence is reached and chains are efficient
  - Or run until the maximum number of iterations is reached
  - Chains are efficient if the efficiency is between 15% and 50%
  - Run in sequences to adjust the width of the proposal functions:
    - If efficiency > 50%: increase the width
    - If efficiency < 15%: decrease the width</li>
- Step 3: Main run
  - Use width obtained from efficiency optimization and convergence
  - Store information (next slide)



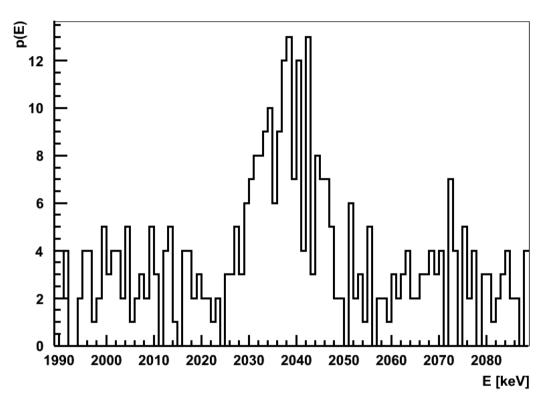
# What is done in each step?

- Marginalization:
  - Fill 1-D and 2-D histograms
  - Large number: N·(N+1)/2, e.g., for N=50 there are 1275 histograms
  - Individual histograms can be switched on/off
- Optimization:
  - Search for maximum of posterior
  - Not precise, but helpful as starting point for other algorithms
- Error propagation:
  - Calculate arbitrary (user-defined) functions from parameters
- Misc:
  - Write points to ROOT tree for offline analysis
  - Perform any user-defined analysis, histogram filling, etc.



# Phrasing the problem:

- Estimate signal strength of Gaussian signal on top of flat background
- Data generated with the following settings:
  - Gaussian signal:
    - position  $\mu = 2039 \text{ keV}$
    - width  $\sigma = 5 \text{ keV}$
    - strength <S> = 100
  - Flat background:
    - strength  $\langle B \rangle = 3/\text{keV}$
- Number of events per bin fluctuate with Poisson distribution





## **Statistical model:**

- Gaussian signal on top of flat background
- 4 (+2) fit parameters: Gauss (3) and flat (1) (+2 nuisance parameters for efficiency)
- Prior knowledge:
  - Background: 300 +- 173 in 100 keV (e.g., from sideband analysis)
  - Signal strength: exponentially decreasing (e.g., theoretical intuition)
  - Signal position: flat (e.g., no idea about the mass of a resonance)
  - Signal width: 5 +- 1 keV (detector resolution)
  - Signal and background efficiency fixed to 1 (in this example)
- Statistical model:
  - Bin data
  - Assume independent Poisson fluctuations in each bin

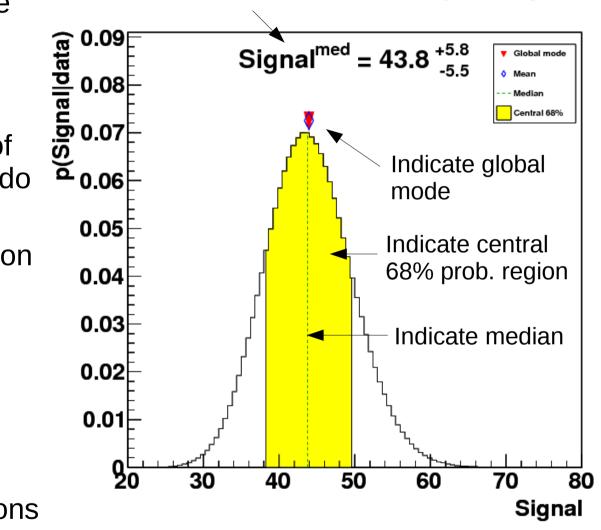
$$p(D|S, \mu, \sigma, B) = \prod_{i=1}^{N_{bins}} \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$
$$\lambda_i = \int_{\Delta_i} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx + \frac{B}{\Delta_i}$$



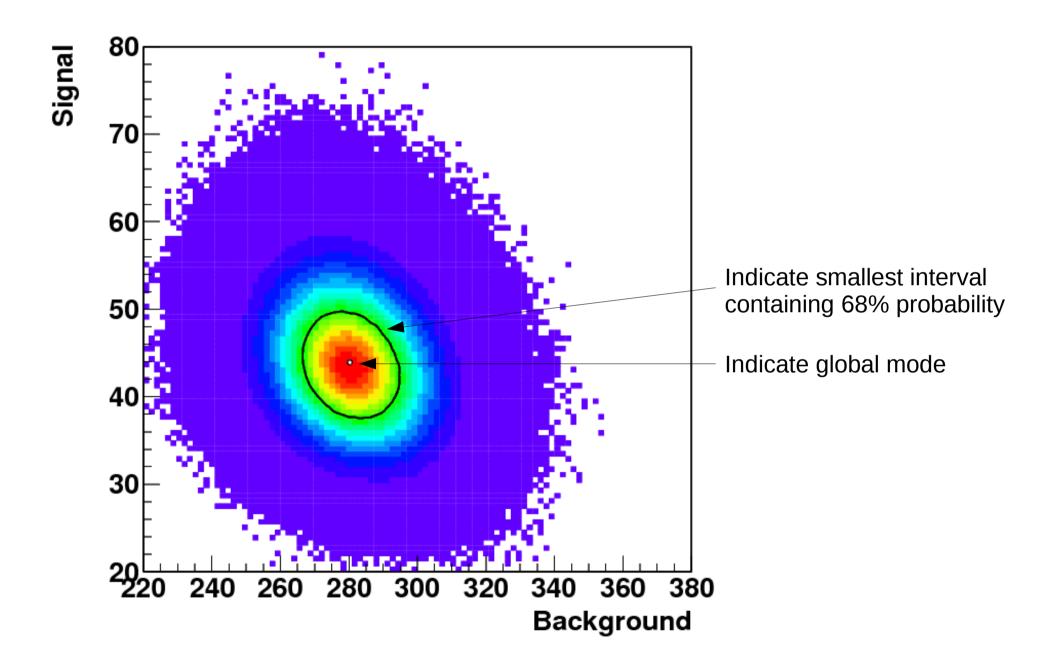
# Marginalized distributions:

- Project posterior onto one parameter axis, i.e., integrate over all other parameters
- Global mode and mode of marginalized distribution do not have to coincide
- Full (correlated) information in Markov Chain
- Default output:
  - Mean +- std. deviation
  - Median and central int.
  - Mode and smallest int.
- All 1-D and 2-D distributions are written out during main run

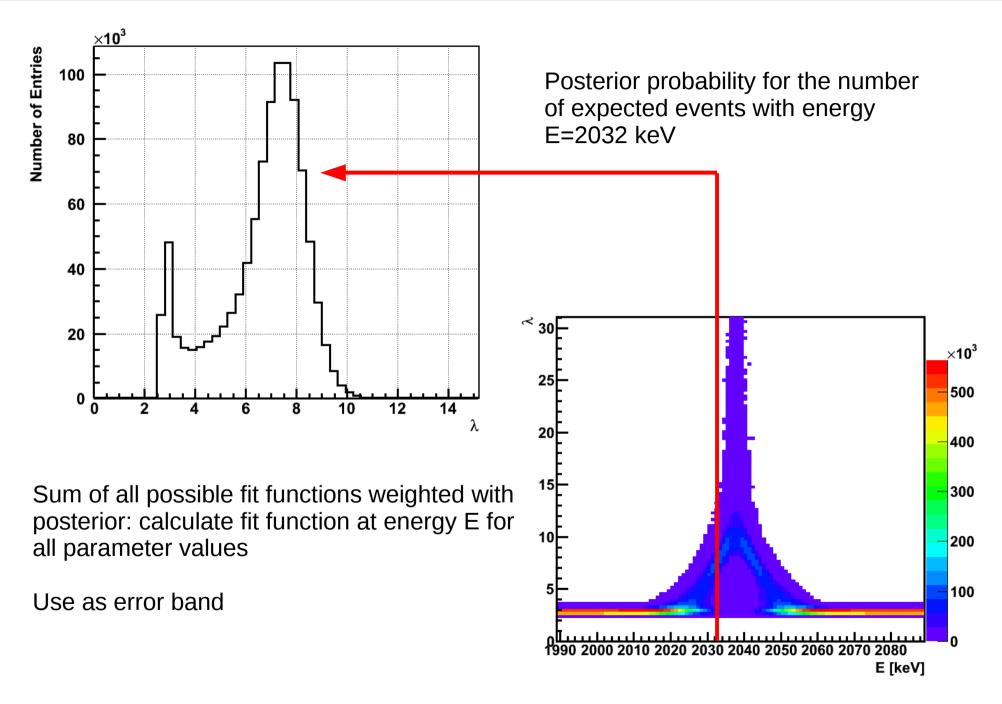
Quote median and central 68% prob. region



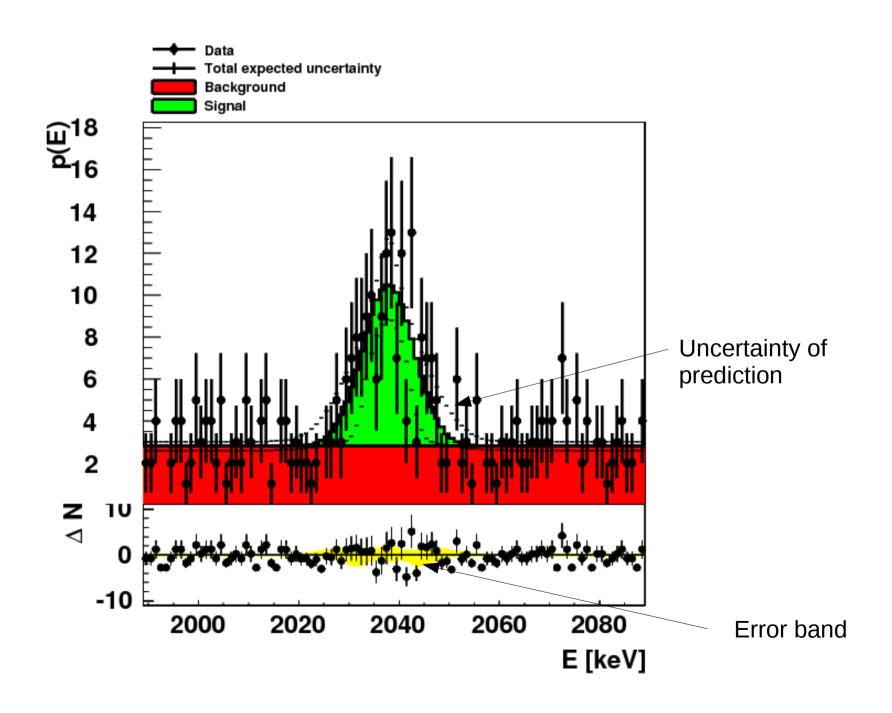














# A working example: text output

#### Results of the marginalization List of parameters and properties of the marginalized distributions: (0) Parameter "Background": Mean +- sgrt(V): 280.8 +- 13.16 Median +- central 68% interval: 280.7 + 13.2 - 13.02 (Marginalized) mode: 280 5% quantile: 259.2 10% quantile: 263.9 16% quantile: 267.7 84% quantile: 294.4 297.7 90% quantile: 302.6 95% quantile: Smallest interval(s) containing 68% and local modes: (266.4, 295.2) (local mode at 280 with rel. height 1; rel. area 0.6978) (2) Parameter "Signal": Mean +- sqrt(V): 43.94 +- 5.724 Median +- central 68% interval: 43.78 + 5.849 - 5.532 (Marginalized) mode: 43.7 5% quantile: 34.8 10% quantile: 36.71 16% quantile: 38.25 84% quantile: 49.88 90% quantile: 51.38 95% quantile: 53.62 Smallest interval(s) containing 68% and local modes: (38, 50) (local mode at 43.7 with rel. height 1; rel. area 0.6821) (4) Parameter "Signal mass": Mean +- sqrt(V): 2038 +- 0.7871 Median +- central 68% interval: 2038 + 0.7806 - 0.7781 (Marginalized) mode: 2038 5% quantile: 2037 10% quantile: 2037 16% quantile: 2037 84% quantile: 2039 90% quantile: 2039 95% quantile: 2039 Smallest interval(s) containing 68% and local modes: (2037, 2039) (local mode at 2038 with rel. height 1; rel. area 0.693)

#### Results of the optimization

Optimization algorithm used:Metropolis MCMC List of parameters and global mode:

- (0) Parameter "Background": 280.2 +- 13.08
- (2) Parameter "Signal": 43.94 +- 5.674
- (4) Parameter "Signal mass": 2038 +- 0.7652
- (5) Parameter "Signal width": 5.159 +- 0.5012

#### Status of the MCMC

===========

Convergence reached: yes

Number of iterations until convergence: 24000

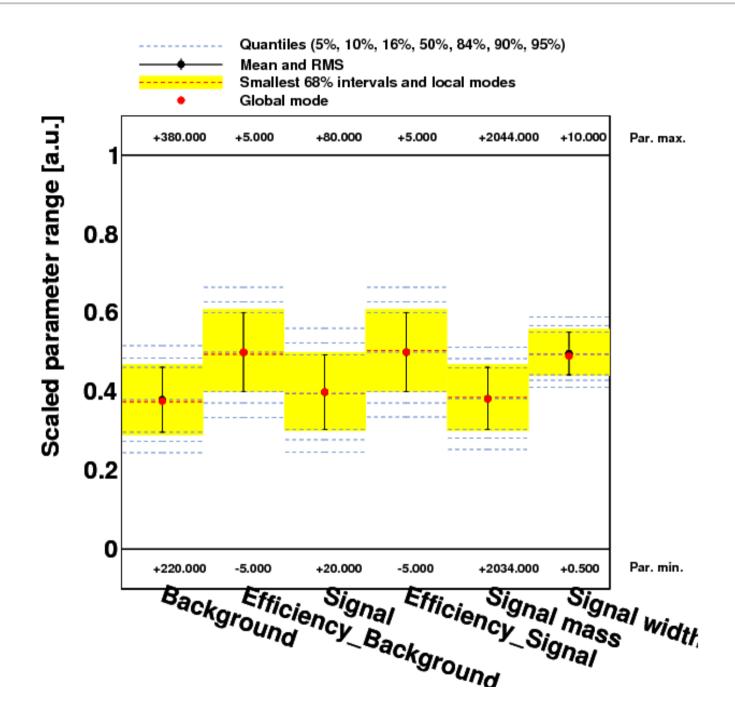
Number of chains: 10

Number of iterations per chain: 10000000

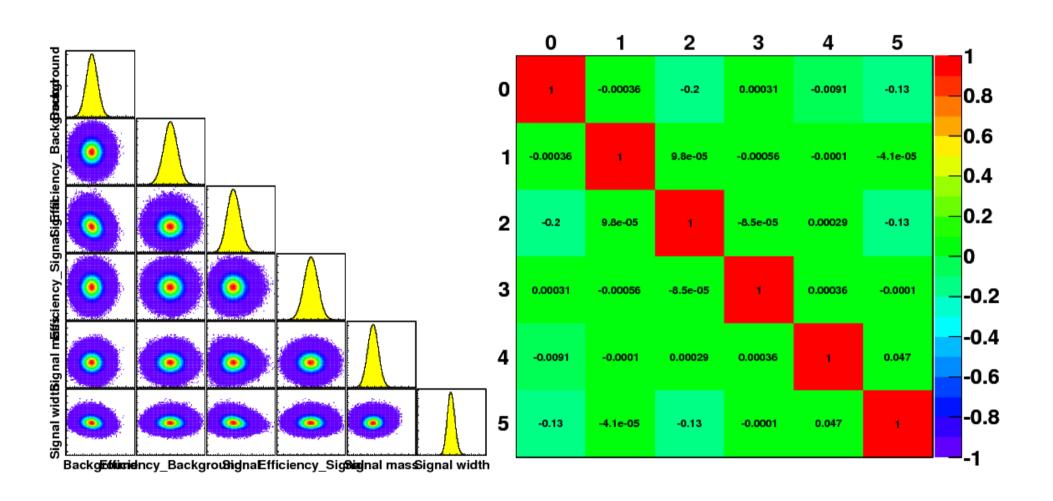
Average efficiencies:

- (0) Parameter "Background": 20.03%
- (2) Parameter "Signal": 17.35%
- (4) Parameter "Signal mass": 24.52%
- (5) Parameter "Signal width": 19.56%

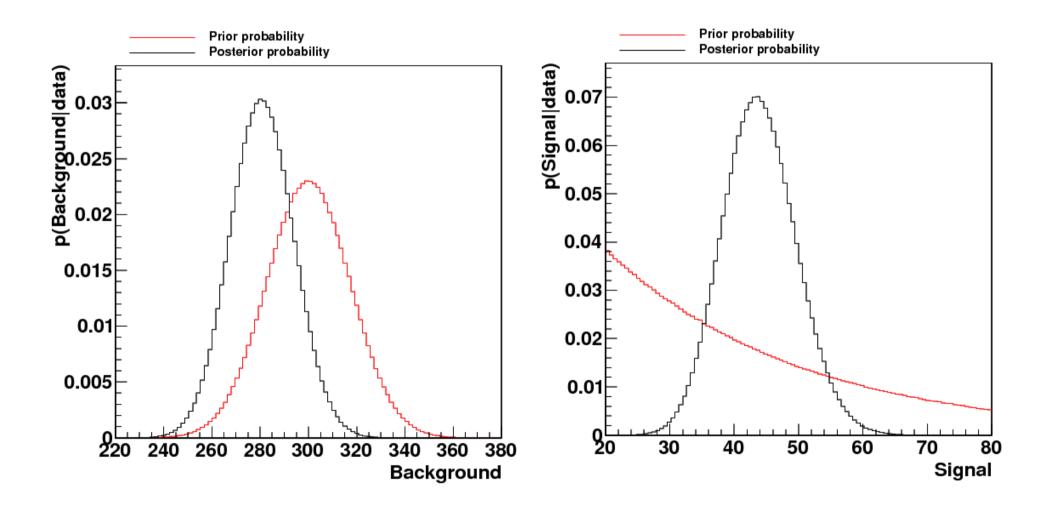




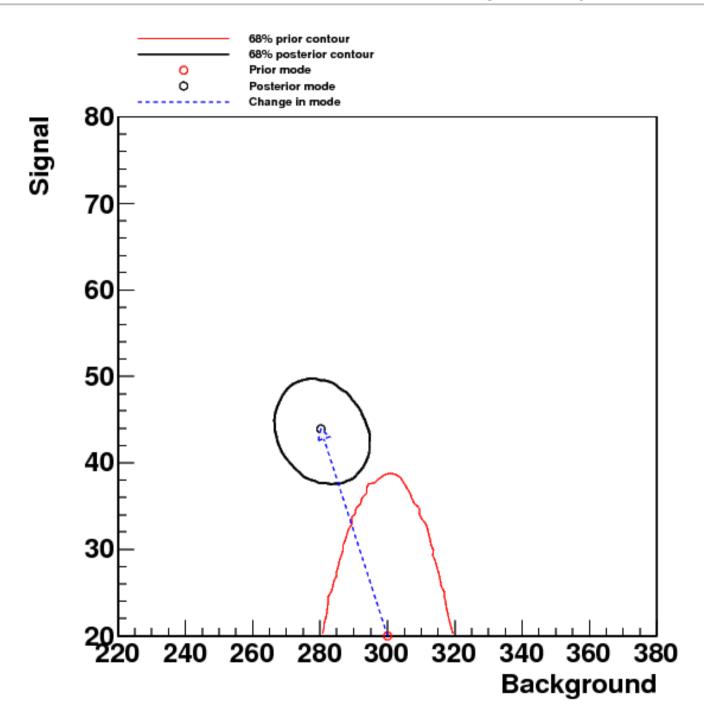




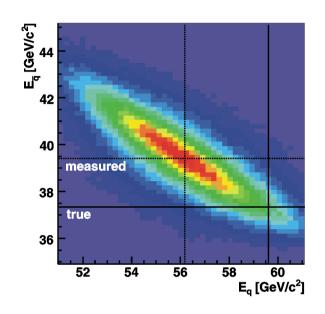


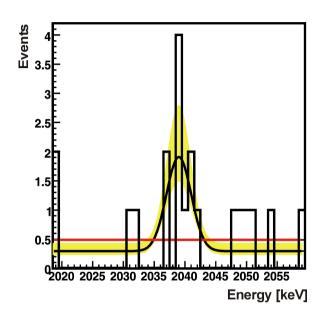


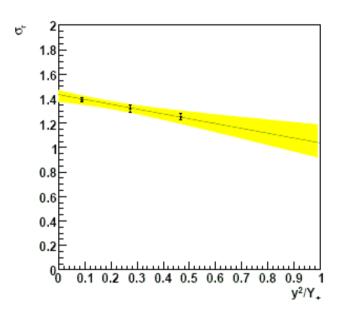












ATLAS: fitting in top quark

Example of kinematic decays

**GERDA**:

Fitting signal on top of a background

**ZEUS**:

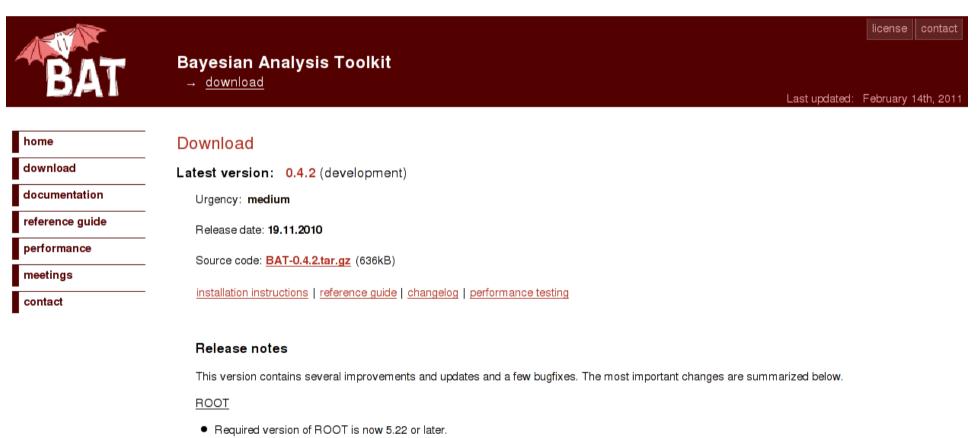
Extraction of the longitudinal structure function



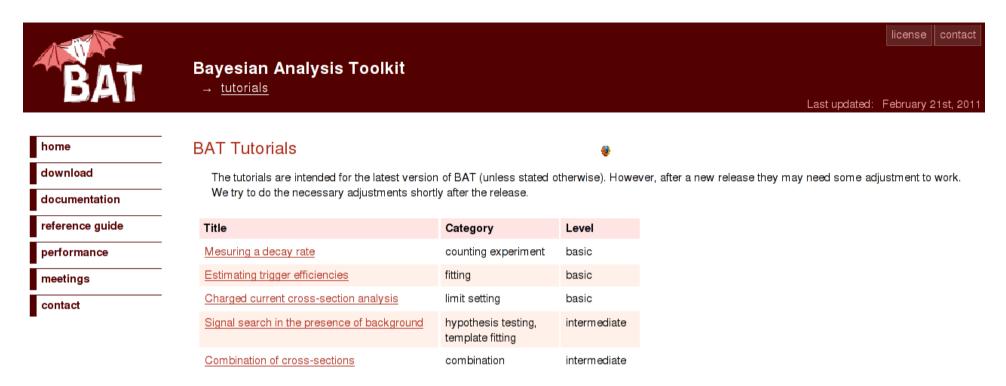
### **Contact:**

- Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552].







### **Tutorials:**

- Quite a few on the web
- Our program here:
  - Couting experiment
  - Charged-current cross-section analysis
  - Using BAT for searches



# **Summary**:

- Bayesian inference requires some computational effort (e.g., nuisance parameters)
- Markov Chain Monte Carlo is the key tool to solve these issues
- BAT is a tool to combine Bayesian inference with MCMC
- Toolbox with more algorithms (integration, optimization, etc.)
- C++ library, modular, easy to use
- Informative output with predefined plots, numbers, etc.
- Did not talk about:
  - Hypothesis testing and goodness-of-fit
  - p-values
  - Bayes factors, information criteria
  - ...
- Upgrade of BAT ongoing, more to come
- Participation and feedback are always welcome