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How we learn 
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Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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Logical Basis 
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Model building and making predictions from models follows deductive 
reasoning: 

Given AB  (with some frequency) 
Given BC  (with some frequency) 
Then, given A you can conclude that C is possible with some probability 
(frequency) 

etc. 

Everything is clear, we can make frequency distributions of possible 
outcomes within the model, etc.  This is math, so it is correct … 
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Logical Basis 
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However, in physics what we want to know is the validity of the model 
given the data.  i.e., logic of the form: 

Given AB  (with some frequency) 
Given BC  (with some frequency) 
Measure C, what can we say about A ?  Well, can say A is a possibly 
correct model.  What else ?  Need to know about other models 

maybe A1C, A2C, … 

We now need inductive logic to decide how much we want to believe 
each possible model.  We can never say anything absolutely conclusive 
about A unless we can guarantee a complete set of alternatives Ai and 
only one of them can give outcome C.  This does not happen in science, 
so we can never say we found the true model.   
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Logical basis 
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Purpose of science is to increase knowledge, where 

Knowledge = justified true belief 

Justification comes from the data. 

Start with some knowledge or maybe plain belief 

Data analysis gives updated knowledge.  Need Bayes’ Theorem to make 
coherent statements on what we believe. 

nb: if don’t use Bayes’ theorem, belief update becomes maximally subjective.  
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Example: Double Beta Decay 
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One of the outstanding questions in Particle Physics is whether the 
neutrino is its own antiparticle (so-called Majorana particle).   

The only practical way which has been found to search for the Majorana 
nature of neutrinos (particle same as antiparticle) is double beta decay 
(because of the light mass of neutrinos, helicity flip is very unlikely 
unless the neutrinos have very low energy). 

For us, what is interesting is that we are looking for a peak at a well-
defined energy in a sparse spectrum. 

A. Caldwell, K. Kröninger, Phys. Rev. D 74 (2006) 092003 



Discovery or not ? 
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Analyze energy spectrum and decide if there is evidence for a signal.  
Counting experiment – Poisson statistics. 



Define the proposition: 

H = The observed spectrum is due to background only 

If p(H|spectrum)<cut, can claim ‘evidence’ for something beyond 
background.  If we assume that what is not background is signal, then 
we claim evidence for the signal. 
E.g.:  

p(H|spectrum)<0.01, ‘evidence’ (better >99% belief in `new physics’) 

p(H|spectrum)<0.0001, ‘discovery’ (better >99.99% belief in `new 
physics’) (very stringent, DoB contains our belief in the new physics) 

Note: intended to be the real ‘degree-of-belief’.  No fudging allowed afterwards 
– otherwise it implies you did not really believe your prior. 

Sparse Spectra 
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What we know how to calculate: 
p(spectrum|H) - the probability to observe the spectrum given H 
(We assume Poisson statistics are valid) 

How do we go from p(spectrum|H) to p(H|spectrum) ? 

Certainly p(A|B) ≠ p(B|A) 
(e.g., 1% probability of signal assuming Standard Model does not mean 
Standard Model model ruled out with 99% certainty) 

Need to use Bayes’ theorem to reach a conclusion  

Sparse Spectra 
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p(H|spectrum) =
p(spectrum|H)p0(H)

p(spectrum)



p0(H) is the prior belief in H (before we do the experiment). It is a 
critical part of the Bayesian analysis.  Our posterior belief in the 
truthfulness of H always depends on prior beliefs.  E.g., 

The existing limits are T1/2>4 1025 yr; a positive claim for a signal exists 
at the level T1/2=1.2 1025 yr;  my favorite theorist believes strongly that 
neutrinos are Majorana particles, but he wont tell me the neutrino mass; 
the theorist at a neighboring university says that he believes strongly in 
Leptogenesis, and in that context the neutrino is a Majorana particle but 
it must be very light, such that neutrinoless double beta decay is 
unobservable,... 

What is p(spectrum) ?  Expand (law of total probability) 

€ 

p(spectrum) = p(spectrum |H)p(H) + p(spectrum |H )p(H )

Double Beta Decay Example 

19/1/11 PHYSTAT 2011 10 



We need also the probability of the negation of H.  In our case, we 
assume knowledge concerning the background, so 

€ 

H = The spectrum is due to background + signal (neutrinoless 
double beta decay). 

I.e., we assume backgrounds are known up to normalization and some 
smoothly varying shape, and the only possibility other than known 
background is signal from neutrinoless double beta decay.  

€ 

p(H | spectrum) + p(H | spectrum) =1

€ 

p(H | spectrum) =
p(spectrum |H)p0(H)

p(spectrum |H)p0(H) + p(spectrum |H )p0(H )

p(H | spectrum) =
p(spectrum |H )p0(H )

p(spectrum |H)p0(H) + p(spectrum |H )p0(H )

so 

DBD example 
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Now we know how to perform all calculations: 

€ 

p(spectrum |H) = p(spectrum |B)p0(B)dB∫

p(spectrum |H ) = p(spectrum | S,B)p0(S)p0(B)dB∫

Where B is the expected number of background events and S is the 
expected number of signal events.  These quantities come with their own 
priors.   

€ 

ni =   observed number of events in bin i
λi =   expected number of events in bin i

λi = S fS (E)dE
ΔEi

∫ + B fB(E)dE
ΔEi

∫

Where fS and fB are the normalized signal and background probability 
densities as functions of energy. 

DBD example 
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then 

€ 

p(spectrum |B) =
λi (0,B)

ni

ni!i=1

N
∏ e−λi (0,B)

p(spectrum | S,B) =
λi (S,B)

ni

ni!i=1

N
∏ e−λi (S,B)

To determine parameter values or set limits, we need 

€ 

p(S,B | spectrum) =
p(spectrum | S,B)p0(S)p0(B)

p(spectrum | S,B)p0(S)p0(B)dSdB∫

and then marginalize
p(S | spectrum) = p(S,B | spectrum)dB∫

e.g., 90% probability upper limit, S90 from solving 

€ 

p(S | spectrum)dS = 0.90
0

S90
∫

DBD example 
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So we know how to calculate probabilities given an experimental 
outcome.  What do we do to check the sensitivity of the experiment ?  
We generate ensembles of possible experimental results, which will 
depend on particular choices of background and signal, B0 and S0.  Then 
we can make distributions of the probabilities which could result under 
these conditions. 

DBD example 
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Assumptions for GERDA: 

€ 

p0(H) = p0(H ) =1/2

p0(S) =
1

Smax
0 ≤ S ≤ Smax p0(S) = 0 otherwise

p0(B) =
e
−
(B−µB )

2

2σ B
2

e
−
(B−µB )

2

2σ B
2

dB0
∞∫

B ≥ 0; p0(B) = 0 B < 0

Smax was calculated assuming T1/2=0.5 1025 yr 
µB=B0,   σB=B0/2 

100 keV window analyzed. B0 total background in this window. 

GERDA example 
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Example: 

Strue=16, Btrue=9 

€ 

p(H | spectrum) = 2.2 ⋅10−12

1000 experiments simulated with 
T1/2=2 1025 yr,  10-3/(kg keV yr) 
Exposure 100 kg-yr 

About 95% chance a discovery 
could be claimed 

Mode=15.96 

discovery 
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Example: 

Strue=0, Btrue=8 

10-3/(kg keV yr) 
Exposure 100 kg-yr 

1000 experiments simulated 

0 false claims of a discovery 

€ 

p(H | spectrum) = 0.93

€ 

S90 = 3.99
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To translate the event numbers into lifetimes, we use 

€ 

S = ln2 ⋅ κ ⋅ M ⋅ εsig ⋅
NA

MA
⋅
T
T1/ 2

Where: 
NA is Avogadro’s number 
MA is the atomic mass of enrGe 
M   is the total mass of Germanium 
κ     is the enrichment factor (by atom, 0.86 used) 
εsig  is the signal efficiency  (taken to be 87%) 

To translate T1/2 to a mass  

€ 

mν = T1/ 2G
0ν( )−1/ 2 ⋅ 1

M0ν

G0ν and T1/2 from Rodin, Faessler, Simkovic, Vogel  nucl-th/0503063 

GERDA example 
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Bayesian analysis: discovery defined as 
P(background only|spectrum)<0.0001 

Phase I: 15 kg-yr, existing enrGe crystals 

Phase II: 100 kg-yr, new segmented enrGe 
crystals 

KK et al. 

GERDA example 
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Discussion 
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The exampled chosen was special in the sense that we could define a 
complete set of models, and therefore produce a coherent probability 
analysis.   Prior beliefs could be defined, and the knowledge update from 
an experiment was clear.  There will always be some discussion on 
which prior beliefs to choose. 

What if we don’t have a complete set of models ?  No real probability 
analysis possible, but we still update our degree-of-belief. 



Incomplete set of models 
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Calculate p-value of null hypothesis 

Not small 

Done, update prior of 
null hypothesis  

Small  

Analyze data using all 
models and priors 

Null has largest posterior 
probability One model 

dominates 
Check p-value of this 

model 
Not small Small  

Look for other 
explanations 

Evidence for new 
physics 

Several models 
have large prob 

More 
analysis 
needed 



Consensus Priors 
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Should define informative priors whenever possible. In cases where 
range important, can define 2 or more consensus priors to show us what 
we learn from the data. 

Different new physics obviously have different priors (e.g., compare 
Higgs at 120 GeV vs new extra dimensions, or, historically, top quark at 
175 GeV vs leptoquarks at HERA).   

Suggestion: form of a particle physics committee which defines 
consensus priors.  Could be more that one prior per process (pessimistic, 
optimistic).  Could cover all particle physics topics (dark matter, neutrino 
mass, Majorana, Higgs, SUSY, …) 

Having consensus priors would allow for a transparent and coherent 
knowledge update.  Consensus priors should be updated as new data 
becomes available. 



Look Elsewhere Effect 
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In the double beta example, we know where to look in energy.  If we 
scanned the energy spectrum and looked for an excess, would we get an 
enhancement of false discoveries (Look Elsewhere Effect) ? 

the look elsewhere effect is suppressed in Bayesian analysis by a factor: 

Where σ is the width of the expected signal and Δ is the range over 
which we search. 

σ/∆



LEE 
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Example: 1D spectrum, search for signal anywhere in spectrum. Assume 
amplitude and width of new signal fixed. 

Assume we can take: P0(H2, µ) = P0(H2)P0(µ|H2)
P0(H2) = P0(H1) = 1/2

P0(µ|H2) =
1

Lµ

p(H2|D) =
∫

P (D|H2, µ)dµ∫
P (D|H2, µ)dµ + LµP (D|H1)

p(H2|D) =
∫

P (D|H2, µ)P0(H2, µ)dµ∫
P (D|H2, µ)P0(H2, µ)dµ + P (D|H1)P0(H1)



LEE 
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Can write: 
∫

P (D|H2, µ)dµ = P (D|H2, µ
∗)δµ

Mode value 
for posterior 

so p(H2|D) =
P (D|H2, µ∗)δµ

P (D|H2, µ∗)δµ + LµP (D|H1)

Degree of belief in new physics hypothesis limited by 
δµ

Lµ
∝ σ

Lµ



Summary 

19/1/11 PHYSTAT 2011 26 

1.  Bayesian framework is natural for quantifying scientific knowledge 

2.  In some cases, a complete analysis possible (e.g., double beta decay).  
Should aim for this whenever possible. 

3.  Often, cannot propose a complete set of models is not available, and 
a hierarchical analysis is needed.  Still need to compare new model to 
null to say you have found something better. 


