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Unfolding means trying to bring the data to the level 
of: 
It is no longer ‘pure’ data – depends on model and 
theory. 
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How we learn 
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Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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How we Learn 
We learn by comparing measured data with distributions for predicted 
results assuming a theory, parameters, and a modeling of the 
experimental process. 

What we typically want to know: 
•  Is the theory reasonable ?  I.e., is the observed data a likely result from 
this theory (+ experiment). 

•  If we have more than one potential explanation, then we want to be 
able to quantify which theory is more likely to be correct given the 
observations 

•  Assuming we have a reasonable theory, we want to estimate the most 
probable values of the parameters, and their uncertainties.  This includes 
setting limits (>< some value at XX% probability).  
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Logical Basis 
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Model building and making predictions from models follows deductive 
reasoning: 

Given AB  (major premise) 
Given BC  (major premise) 
Then, given A you can conclude that C is true 

etc. 

Everything is clear, we can make frequency distributions of possible 
outcomes within the model, etc.  This is math, so it is correct … 
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Logical Basis 
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However, in physics what we want to know is the validity of the model 
given the data.  i.e., logic of the form: 

Given AC 
Measure C, what can we say about A ? 

Well, maybe A1C, A2C, … 

We now need inductive logic.  We can never say anything absolutely 
conclusive about A unless we can guarantee a complete set of 
alternatives Ai and only one of them can give outcome C.  This does not 
happen in science, so we can never say we found the true model. 
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Logical basis 
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Instead of truth, we consider knowledge 

Knowledge = justified true belief 

Justification comes from the data. 

Start with some knowledge or maybe plain belief 

Do the experiment 

Data analysis gives updated knowledge  
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Bayesians and Frequentists 
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Frequentists make statements of the kind: 

‘Assuming the model is correct, this result will occur in XX% of the 
experiments’ 

The model is assumed true, and estimators for the true parameters in the 
model are produced from the data. 

In the ‘classical’ approach, this is then converted to ‘assuming the model, 
the bounds [a,b] will contain the true value in XX% of experiments 
performed’ (confidence levels). Does not imply that the true value is in 
the range [a,b] with probability XX ! 

The decision on whether to then believe the model/parameters is left to 
the individual (subjective).  The inductive part of the reasoning is left out 
of the analysis. 
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Bayesians and Frequentists 
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Bayesians make statements of the kind: 

‘the degree-of-belief in model A is XX (between 0,1)’ 

Given the new data, the degree-of-belief is updated using the frequencies 
of possible outcomes in the context of the models (full set) 

Credible regions are then defined: with XX% credibility, the parameter is 
in the interval [a,b]. Note – very different from a CL. 

The inductive part of the reasoning is built in to the analysis, and the 
connection between prior beliefs and posterior beliefs is made clear.  

Subjective, but the subjective element is made explicit. 
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Bayesians and Frequentists 
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In both approaches, work with models and frequencies of outcomes 
within the model. 

Many elements are the same: calculating the frequencies of possible 
outcomes given the model AND the experimental conditions; picking the 
most sensitive variables to test the theory, … 

There is no right and wrong approach, but you have to understand what 
you get out of each type of analysis.  E.g., don’t confuse confidence 
levels with probabilities, p-values with support for a model, … 

In the Bayesian approach, if you cannot formulate a prior (e.g., limits on 
SUSY parameters), then cannot talk about knowledge or degree-of-
belief. 
… 
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Formulation of Data Analysis 
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In the following, I will formulate data analysis as a knowledge-updating 
scheme. 

Knowledge+data  updated knowledge 

This leads to the usual Bayes’ equation, but I prefer this derivation to the 
usual one in the textbooks. 



Formulation-introduction 
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The expected distribution (density) of the data assuming a model M and 
parameters     is written as                       where     is a possible realization 
of the data.  There are different possible definitions of this function. 

!λ !x

Imagine we flip a coin 10 times, and get the following result: 

   T H T H H T H T T H 

We now repeat the process with a different coin and get 

   T T T T T T T T T T 

Which outcome has higher probability ? 

12 

P (!x|!λ, M)
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Take a model where H, T are equally likely.  Then, 

 outcome 1  
And 

 outcome 2 

prob = (1/2)10

prob = (1/2)10

Something seem wrong with this result ?  This is because we evaluate 
many probabilities at once.  The result above is the probability for any 
sequence of ten flips of a fair coin.  Given a fair coin, we could also 
calculate the chance of getting n times H: 

(
10
n

) (
1
2

)10
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And we find the following result: 

n p
0 1·2−10

1 10·2−10

2 45·2−10

3 120·2−10

4 210 ·2−10

5 252 ·2−10

6 210 ·2−10

7 120 ·2−10

8 45 ·2−10

9 10 ·2−10

10 1 ·2−10

There are many more ways to get 5 H 
than 0, so this is why the first result 
somehow looks more probable, even 
if each sequence has exactly the same 
probability in the model. 

Maybe the model is wrong  and one 
coin is not fair ?  How would we test 
this ? 

14 
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The message: there are usually many ways to define the probability for 
your data.  Which is better, or whether to use several, depends on what 
you are trying to do. 

E.g., have measured times in exponential decay.  Can define the 
probability density as 

P (!t|τ) =
N∏

i=1

1
τ

e−ti/τ

Or you can count events in a time interval and compare to expectations 

P (!t|τ) =
M∏

j=1

e−νj ν
nj

j

nj !
νj = expected events in bin j
nj = observed events in bin j
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Formulation 
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We require that  

although as we will see the normalization condition is not really needed. 

The modeling of the experiment will typically add other (nuisance) 
parameters.  E.g., there are often uncertainties, such as, e.g., the energy 
scale of the experiment.  Different assumptions on these lead to different 
predictions for the data.  Can have 

  where      represents our nuisance parameters. !ν
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P (!x|!λ, M) ≥ 0
∫

P (!x|!λ, M)d!x = 1

P (!x|!λ,!ν, M)



Formulation 
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For the model, we have                          .  For a fully Bayesian analysis, 
we require   

For the parameters, assuming a model, we have: 

∑
i P (Mi) = 1

0≤ P (M) ≤ 1

The joint probability distribution is P (!λ, M) = P (!λ|M)P (M)

and 
∑

i

P (Mi)
∫

P (!λ|Mi)d!λ = 1

P (!λ|Mi) ≥ 0∫
P (!λ|Mi)d!λ = 1
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where the index represents a ‘state-of-knowledge’ 

We have to satisfy our normalization condition, so 

We usually write                .  This is our ‘prior’ information before 
performing the measurement. 

Learning Rule 
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Pi+1(!λ, M | !D) ∝ P (!x = !D|!λ, M)Pi(!λ, M)

Pi+1(!λ, M | !D) =
P (!x = !D|!λ, M)Pi(!λ, M)

∑
M

∫
P (!x = !D|!λ, M)Pi(!λ, M)d!λ



Learning Rule 
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The denominator is the probability to get the data summing over all 
possible models and all possible values of the parameters.  

Bayes Equation 

so 

19 

Pi+1(!λ, M | !D) =
P (!x = !D|!λ, M)Pi(!λ, M)

∑
M

∫
P (!x = !D|!λ, M)Pi(!λ, M)d!λ

P ( !D) =
∑

M

∫
P (!x = !D|!λ, M)Pi(!λ, M)d!λ



Parameter Estimation 
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The posterior pdf gives the full probability distribution for all 
parameters, including all correlations – no approximations.  If interested 
in subset of parameters, then marginalize.  E.g., for one parameter: 

P (λi| "D,M) =
∫

P ("λ| "D,M)d"λ !=i

Can calculate what you need from the posterior pdf. E.g., 

Mean of λi < λi >=
∫

P (λi| "D,M)λidλi

Mode
λimax {P (λi|D,M)}

Median
∫ λmed

λmin
P (λi| "D,M)dλi = 0.5

Can also perform uncertainty propagation w/o approximations 

+ probability intervals, … 

20 
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Setting limits is easy – just integrate the posterior pdf.  E.g., 90% upper 
limit: 

0.9 =
∫ λupper

λmin

P (λi| "D,M)dλi

Or calculate contours in higher dimensional spaces 
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Detailed example 

We consider the following process 
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eP → ePJ/ψ

J/ψ → µ+µ−

Scattered 
proton in this 
event escapes 
down 
beampipe 
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kinematics 
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We are interested in the 4-momentum transfer squared to the proton (it is 
related to the gluon distribution in the proton via a Fourier transform).  
The expected form is: 

dσ

dt
∝ eBSt Note that t is negative 

There are two experimental issues to consider: 
•  t is smeared due to the transverse momentum spread of the incoming 
proton beam 
•  there is a similar process where the proton breaks up, but the fragments 
stay in the beampipe, which is a background to the process of interest.  It 
is also expected to have an exponential distribution but with a different 
slope. dσ

dt
∝ eBBt
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Analysis Task 
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The analysis task is to extract 
the slope parameter BS 

Consider two approaches: 
1.  Subtract the background, 

then unfold the resulting 
distribution, then fit 
extracted cross sections 
with simple exponential 

2.  Fit for the signal slope by 
reweighting the MC 
prediction for observed 
distribution for different 
different BS 

Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.

2

1

2 

Unfolded data 

For each approach, we use a simulation to tell us 
how the observed distribution depends on the 
assumed model. 



Generation of test data 
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We produce some simulated data as follows: 

Assume  σS = σB LσS = 1000 events 

A data set is generated with 1000 signal and 1000 background events. 
The slopes chosen are  

For each data event, a value of t is generated using 

t = − lnU/B

Where U is a random number drawn from a uniform distribution (0,1) 
and B is the slope corresponding to the process at hand. 
The value of t is then smeared to account for the rms transverse 
momentum of the incoming proton beam (100 MeV/c assumed). 

25 

Exercise: show that this leads to an exponential 
distributrion with slope B. 

BS = 5 GeV−1 BB = 2 GeV−1



Generated data 
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Analysis 1 
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The standard procedure at this point is to correct the data and present 
them in the form of cross sections.  These cross sections with their 
uncertainties can then be used by model builders to fit their favorite 
models. 

First, we subtract the background: 

- Need to know the normalization of the background 
- Need to know the slope of the background 
- Need to know the smearing due to the experimental conditions 

We initially assume we know these perfectly.  I.e., we know  σB and BB

                      events LσB = 1000
Procedure used: simulate a large background sample and normalize it to               

27 



Background corrected 
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In this region, can 
have negative 
number of events 



Bin-by-bin unfolding 
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Given the background corrected event distribution, we produce cross 
sections using the so-called ‘bin-by-bin’ unfolding method.  

dσDATA

dt
=

dσMC

dt

NDATA

NMC

The N’s represent event counts in an interval of t. The simulation is used 
to take out the effects of the theoretical assumptions and all detector 
effects in one step.  Some guidelines are usually used to decide where 
one can quote cross sections, such as: 
•  purity in the bin (a reasonable fraction of events reconstructed in the 
bin should have been initially generated in the bin) 
•  efficiency (there should be a high enough chance to keep events 
generated in the bin) 
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Bin-by-bin unfolding 
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What uncertainty should be assigned to the cross section ?  Standard 
procedure is to take for the statistical uncertainty 

δ

(
dσDATA

dt

)
=

(
dσDATA

dt

) √
NTOT

NDATA

Where NTOT is the total number of events recorded in the bin.  What if 
NDATA<0 ?  Can use theory to estimate. 

Note that the statistical uncertainty defined this way depends on the 
resolution of the detector, the definition of the background, …  In the 
tails of a steeply falling distribution, the measured number of events is 
always too high due to migrations, so the statistical errors are 
underestimated.  This definition also has conceptual difficulties for small 
numbers of events.  I.e., its what we often do, but not clear (to me) what 
it means. 
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Cross sections 
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estimate statistical 
uncertainty 
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BS = 4.90± 0.15

χ2  fit with MINUIT 

BB=2.0 fixed 
rB=0.5 fixed 



Systematic uncertainties in bin-by-bin 
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Standard approach: 
•  recalculate cross sections where uncertain element shifted by one 
standard deviation.  E.g., if rB=0.5±0.1, recalculate cross section with 
rB=0.6 and rB=0.4 
•  make a table  

Cross 
section 
bin 

Systematic 
check 

Nominal 
result 

Syst 1 Syst 2 … 

1 
2 

… 

•  redo BS extraction for each systematic variation, add results in 
quadrature. 



Systematic uncertainties bin-by-bin 
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Suppose we generated the MC with BS=6, BB=1.5, rB=0.4 and the ‘1 
sigma’ uncertainties are 2,1,0.2 

fit BS Error 
Nominal 5.16 0.14 
BS=8 5.15 0.14 
BS=4 5.17 0.14 
BB=2.5 3.84 0.13 
BB=0.5 5.23 0.11 
rB=0.6 5.67 0.16 
rB=0.2 4.49 0.11 

BS = 5.16± 0.14+0.51
−1.48

Positive and negative deviations 
added separately in quadrature 



Iterative unfolding 
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Can try to improve on the previous results using iterative unfolding.   

Basic idea: use comparison of unfolded data with model to determine 
which parameter values are best (and therefore best for unfolding).  
Repeat unfolding with improved parameter estimates. 

However, in many cases do not need to do unfolding.  If that is the case, 
don’t do it. 



Analysis without unfolding 

10/25/10 Helmholtz Statistics School - 
Göttingen 

Here, we will compare directly the observed t distribution with 
predictions using different slopes for the signal, background, background 
fraction, etc. 

The analysis is performed using the Bayesian Analysis Toolkit – start 
with an introduction on this new fitting package. 
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BAT →  Software package for solving data analysis problems 

•  The idea behind BAT 

  Merge common parts of every Bayesian analysis into a software package 

  Provide flexible environment to phrase arbitrary problems 

  Provide a set of well tested/tuned numerical algorithms and tools 

  C++ based framework (flexible, modular) 

  Interfaces to ROOT, Cuba, Minuit, user defined, .. 

  can be downloaded from:  http://www.mppmu.mpg.de/bat 

Code structured on Bayes' formula for parameter estimation 
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The idea 

Separate the common parts from the rest 
  case specific: the model and the data 

  common tools: all the rest 

Define MODEL 
  define parameters 
  define likelihood 
  define priors 

Read DATA 
  from text file, ROOT tree, 

user defined (anything) 

  create model 
  read-in data 

USER DEFINED 

  normalize 
  find mode / fit 
  test the fit 
  marginalize wrt. one or 

two parameters 
  compare models 

  provide nice output 

MODEL 
INDEPENDENT 
(common tools) 
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Markov Chain Monte Carlo (MCMC) 
  generally it is very difficult to obtain the full posterior PDF 
-  number of parameters can be large 
-  different input data will result in a different posterior 

  also the visualization of the PDF in more than 3 dimensions is rather 
impractical and hard to understand 

  usually one looks at marginalized posterior wrt. one, two or three 
parameters 
-  a projection of the posterior onto one (two, three) parameter 
-  integrating all the other parameters out 
-  still numerically difficult 

  the Markov Chain Monte Carlo revolutionized the area of Bayesian 
analysis 
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Metropolis algorithm 

xi 

f(xi) 

y y 

f(y) 

f(y) 

always 
accepted 

accepted with 
probability f(y)/
f(xi) 
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  In BAT implemented Metropolis algorithm 
  Map positive function f(x) by random walk towards higher 

probabilities 
  Algorithm: 

-  Start at some randomly chosen  xi 
-  Randomly generate  y  around  xi 

-  If  f(y) ≥ f(xi), set  xi+1 = y 
-  If  f(y) < f(xi), set  xi+1 = y  with probability 
-  If  y  not accepted, stay where you are, i.e., set  xi+1 = xi 

-  Generate new y , repeat 

  For each step fill the histogram with xi+1 

  For infinite number of steps the distribution in the histogram 
converges to  f(x)  (except for the normalization) 

f(y)/f(xi)

Exercise: try out the Metropolis 
algorithm to generate a Gaussian 
distribution from flat rn [0,1] 
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MCMC: an example 

  mapping an arbitrary function: 

  distribution sampled by MCMC in this 
case quickly converges towards the 
underlying distribution 

  mapping of complicated shapes with 
multiple minima and maxima 

Note: 
  MCMC has to become stationary to 

sample from underlying distribution 
  in general the convergence is a non-

trivial problem 

linear scale log scale 

number of 
iterations 

1000 

10000 

1000000 
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e.g. f(x) = x4 sin2 x
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Scanning parameter space with MCMC 

  In Bayesian analysis use MCMC  
to scan parameter space of  

  MCMC converges towards  
underlying distribution 

  Marginalize wrt. individual 
parameters while walking 
→ obtain 

  Find maximum (mode) 
  Uncertainty propagation 

41 

!λ

P (λi| "D) =
∫

P ("λ| "D)d"λj !=i
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Analysis of Markov Chain 

  the full chain(s) can be stored for further analysis and parameter 
tuning as ROOT  TTree(s) 
-  allows direct usage of standard ROOT tools for analysis 

  Markov Chain contains the complete information about the posterior 
(except for the normalization) 

par0 vs. iteration 

par0 vs. par1 
for every 
iteration 

convergence reached!

42 
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Obtaining marginalized distributions from TTree 

root[12] chain0 -> Draw(“par0:par1”) 

root[11] chain0 -> 
Draw(“par0”) 

43 



Using observed data 
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We now use BAT to compare data and predictions directly. 

The data is the number of events observed in a bin of tmeas 
The MC is used to predict an observed number.  The MC prediction 
depends on BS,BB,rB where rB is the fraction of background. 

The probability of the data is P ( !D|BS , BB , rB) =
∏

i

e−νiνni
i

ni!
ni data events in bin i

νi MC prediction in bin i
νi = (1− rB)νi,signal + rBνi,background

Notes:  
1.  event counting, so Poisson distribution used 
2.  The data has no error ! Calculate probability for νi to give ni 



Weighted bin content 
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The MC prediction for a bin is updated depending on the parameter 
values as follows (for the signal, similar for background): 

I(tmeas, i) = 1 if i∆t ≤ tmeas < (i + 1)∆t

I(tmeas, i) = 0
else 

νi,signal =
Nsignal∑

j=1

I(tmeas, i)wj
Nsignal is the number of MC 
signal events 

I starts at 0 
∆t is the bin size

wj =
Ndata

Nsignal

BS

BS,0
exp((BS −BS,0)tj,gen)

BS,0

tj,gen

The value of B used in the generation 

The true t value for event j 

Exercise: show that this 
reweighting generates the 
correct t distribution 



Results of fit 
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Systematic uncertainties 
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Treatment of systematic uncertainties is straightforward.  E.g., suppose 
we do not have perfect knowledge of the background fraction and 
background normalization.  This can be built into the prior: 

P0(BS , BB , rB) =P0(BS)P0(BB)P0(rB)
P0(BS) ∼N (6, 2)
P0(BB) ∼N (1.5, 1)
P0(BS) ∼N (0.4, 0.2)

Signal thought to be around 
BS=2, background around 
BB=1.5, background fraction 
around 0.4 

Instead of shifting each quantity by 1-sigma as in the bin-by-bin, we now 
sample directly from a Gaussian distribution.  Systematics are included 
as nuisance parameters in the analysis. 
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knowledge 
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We have seen that we get very good results w/o unfolding.  Also, the 
uncertainties are well-defined. 

How would we report the result ? 

1.  Report P(BS|D), keep data analysis code and data around for future 
use.  The paper would contain the observed event counts with the 
expectations from the model with best parameters, as well as the pdf 
for BS. 

2.  Unfold the data once you have the best parameters values, report 
cross sections which others can fit.  How to define the uncertainties ? 


