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Introduction

p∣ D  =
p D ∣ p0

∫ p D ∣ p0 d

BAT → Software package for solving of statistical problems using Bayesian approach

The idea behind BAT
● Merge common parts of every Bayesian analysis into a software package
● Provide flexible environment to phrase arbitrary problems
● Provide a set of well tested/tuned numerical algorithms and tools
● C++ based framework (flexible, modular)
● Interfaces to ROOT, Cuba, Minuit, user defined, ...

Bayes' formula for parameter estimation

Motivation:
● many of us have done Bayesian analyses in HEP always having to implement the numerical 

algorithms and tools by ourselves → generally non-trivial
● create a package/toolkit to take care of that



21.5.2010 Daniel Kollár #3

BAT availability

● can be downloaded from:  http://www.mppmu.mpg.de/bat
● BAT comes in form of shared library

● depends of the ROOT I/O functionality

● BAT contains at the moment 15 classes 
which provide:
– main infrastructure
– algorithms
– output and logging
– extension classes to solve specific 

(frequent) fitting problems

● a set of well documented examples is
included in BAT distribution
– good starting point

● “Introduction to BAT” document

● the BAT paper: Computer Physics Communications 180 (2009) 2197-2209

http://www.mppmu.mpg.de/bat
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The idea

p∣ D  =
p D ∣ p0

∫p D ∣ p0 d

Separate the common parts from the rest
● case specific: the model and the data
● common tools: all the rest

Define MODEL
● define parameters
● define likelihood
● define priors

p  D ∣
p0



Read DATA
● from text file, ROOT tree, 

user defined (anything)

● create model
● read-in data

USER DEFINED

● normalize
● find mode / fit
● test the fit
● marginalize wrt. one or two 

parameters
● compare models

● provide nice output

MODEL
INDEPENDENT
(common tools)

Bayes formula
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Common tools

● Posterior mapping  → Marginalization
– Markov Chain Monte Carlo (MCMC)

● key tool in the package
● lot of emphasis put on efficiency, performance and validation

● Integration
– Monte Carlo (sampled mean), Cuba (Vegas, ...)

● Maximization
– Monte Carlo, MCMC, Minuit, Simulated Annealing

● Model testing
– Posterior comparison, K-factors, p-value calculation

● User interface
– simple model definition
– standard output: text output, plots, ROOT histograms and trees, ...
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Markov Chain Monte Carlo (MCMC)

● generally it is very difficult to obtain the full posterior PDF

– number of parameters can be large

– different input data will result in a different posterior

● also the visualization of the PDF in more than 3 dimensions is rather impractical and hard to 
understand

● usually one looks at marginalized posterior wrt. one, two or three parameters

– a projection of the posterior onto one (two, three) parameter

– integrating all the other parameters out

– still numerically difficult

● the Markov Chain Monte Carlo revolutionized the area of Bayesian analysis

– Metropolis algorithm

p i ∣ D  =∫ p D ∣  p0dj≠i
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Metropolis algorithm

● In BAT implemented Metropolis algorithm

● Map positive function f(x) by random walk towards higher probabilities

● Algorithm:

– Start at some randomly chosen  xi

– Randomly generate  y  around  xi

– If  f(y) ≥ f(xi), set  xi+1 = y

– If  f(y) < f(xi), set  xi+1 = y  with probability

– If  y  not accepted, stay where you are, i.e., set  xi+1 = xi

– Start over

● For each step fill the histogram with xi+1

● For infinite number of steps the distribution in the histogram converges to  f(x)  
except for the normalization

p=
f y 
f  x i

xi

f(xi)

y y

f(y)

f(y)

always 
accepted

accepted with 
probability 
f(y)/f(xi)
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MCMC: an example

● mapping an arbitrary function:

● distribution sampled by MCMC in this 
case quickly converges towards the 
underlying distribution

● mapping of complicated shapes with 
multiple minima and maxima

Note:

● MCMC has to become stationary to 
sample from underlying distribution

● in general the convergence is a non-
trivial problem

f x  = x4 sin2x

linear scale log scale

number of
iterations

1000

10000

1000000
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Scanning parameter space with MCMC

● In Bayesian analysis use MCMC 
to scan parameter space of 

●

● MCMC converges towards 
underlying distribution

– Determining of the overall 
probability distribution of the
parameters

● Marginalize wrt. individual
parameters while walking
→ obtain

● Find maximum (mode)

● Uncertainty propagation

1

 2

p1 ∣ D 

p2 ∣ D 

f  = p D ∣ p0



p ∣ D 

p  ∣ D  =
p  D ∣ p0 

∫p D ∣ p0 d 

pi ∣ D  =∫p D ∣  p0d  j≠i



21.5.2010 Daniel Kollár #10

Some details of MCMC implementation

Running several chains in parallel (default is 5)
● Start at random locations in allowed parameter space
● Initialize chains by doing a pre-run to achieve convergence

– Convergence defined using r-value (Gelman & Rubin, StatSci 7, 1992)
● Essentially a ratio of the mean of the variances and the variance of the mean 

values of the chains for each parameter
● Convergence criterion  |r-1| < 0.1

● Steps in parameter space done consecutively for each parameter and chain
● Proposal function for new steps is a product of Breit-Wigner functions with varying widths
● The efficiency for accepting new point is evaluated for each parameter and chain over 

last min(npar*1000,10000) iterations and the widths are adjusted for all parameters to 
increase the performance
– If efficiency > 50%, increase the width
– If efficiency < 15%, decrease the width

● use MCMC only after pre-run has ended, convergence was reached and all parameter 
proposal widths have been adjusted

Most parameters can be set by the user
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MCMC proposal function

● by default using independent proposal functions for each parameter, i.e., new MCMC point 
for each parameter generated separately

● tested several different proposal functions on multi-peak distributions
with deep valleys of probability density between them

– old default: flat distribution
● adjusting step size to achieve high efficiency
● convergence problems

– new default: Breit-Wigner distribution
● adjusting width to achieve high efficiency
● best convergence performance on all tested examples

– Gaussian distribution
● tails too low, convergence not very good

● it is possible to overload the proposal function with user defined function

– either separately for every parameter

– or with a single correlated function

flat

Breit-Wigner
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Analysis of Markov Chain

● danger of non-convergence still remains
● the full chain(s) can be stored for further analysis and parameter tuning as ROOT  TTree(s)

– allows direct usage of standard ROOT tools for analysis

● Markov Chain contains the complete information about the posterior
(except for the normalization)

par0 vs. iteration

parr0 vs. par1
for every
iteration

convergence reached
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Obtaining marginalized distributions from TTree

root[12] chain0 -> Draw(“par0:par1”)

root[11] chain0 -> Draw(“par0”)
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MCMC lag

● due to sampling nature of the MCMC, there is an autocorrelation between samples

– newly generated point to some extent depends on the previous point, especially if step-
size/range for generating new point is small

– autocorrelation can be removed by ''thinning'' the sample – introducing a lag N

● only every N-th sample from MCMC is used to generate the distribution
● cost for better description of the mapped PDF is high – number of iterations has to 

be increased by factor N to reach the same statistical power

– lag can be set in BAT (default is 1, i.e., no lag)
● all calculations and filling of the distributions are only performed every N-th iteration

– testing on various distributions shows improved MCMC description when using lag

MCMC mapping 
of function x4sin2x 
overlayed with the 
function itself

2 difference
between the function
 x4sin2x and the
distribution generated
by MCMC as a 
function of lag
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Markov Chain in BAT

What's done within one run of the MCMC in BAT?
● for every iteration the histograms for all 1D and 2D marginalized distributions are filled 

(TH1Ds and TH2Ds)

– large number of histograms:        Nparam (Nparam+1) / 2
(e.g. for Nparam=50 there are 1275 histograms in total)

– it is possible to switch off filling of individual distributions

● any function of parameters can be evaluated for every iteration

– most natural candidate is uncertainty propagation

● since we're scanning parameter space, location of maximum can be found

– not very efficient for maximization (minimization)

– mode found in MCMC is generally an excellent starting point for other minimization 
algorithms

– Minuit or Simulated Annealing can be used directly from BAT
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BAT How-To

● BAT analysis can be run in compiled mode as well as from within an interactive ROOT 
session (ROOT macro)

– examples distributed together with BAT show both types of use

● user model is defined by creating a model class that inherits from the base model class 
BCModel
– define parameters and their ranges

– define the LogLikelihood() method

– define the LogAPrioriProbability() method

● in the main program use the functionality of BCModel to perform the analysis

● script CreateProject.sh from the BAT distribution creates several source files with a skeleton 
of a new model definition, main program and an appropriate Makefile

● in addition, several predefined models in BAT remove the need to define a model for frequent 
analysis problems: Fast fitters
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Simple GraphFitter example

Simple ROOT macro:

 TGraphErrors * graph = ...;

 TF1 * f1 = new TF1(“f1”,”[0]+[1]*x”, 0., 100.);

 f1->SetParLimits(0, -20., 30.);

 f1->SetParLimits(1, .5, 1.5);

// BAT fitting bellow

 BCGraphFitter * gf = new BCGraphFitter(graph, f1);

 

 gf->Fit();

 

 gf->DrawFit("", true);

 gf->PrintAllMarginalized (“file.ps”);

  gf->PrintResults();

Data to fit are in a TGraphErrors object 
(uncertainties are necessary)

Function to fit is defined via TF1 object

Parameter ranges have to be specified !

Define BCGraphFitter, assume gaussian 
uncertainties

Fit the TGraphErrors with TF1 function 
using BAT

Draw the data, the best fit and the error 
band

Print all Marginalized distributions

Print summary of results to text file
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Graphical output

Marginalized posterior probability densities

Fit and the error band representing the 
central 68%probability interval
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results.txt

-----------------------------------------------------
 Summary
-----------------------------------------------------

Model summary
=============
 Model: GraphFitter with f1
 Number of parameters: 2
 List of Parameters and ranges:
   (0) Parameter "p0": (-20, 30)
   (1) Parameter "p1": (0.5, 1.5)

 Results of the marginalization 
==============================
 List of parameters and properties of the marginalized
 distributions:
  (0) Parameter "p0":
      Mean +- sqrt(V):                8.756 +- 3.152
      Median +- central 68% interval: 8.77 +  3.115 - 3.138
      (Marginalized) mode:            8.75
       5% quantile:                   3.519
      10% quantile:                   4.693
      16% quantile:                   5.632
      84% quantile:                   12.01
      90% quantile:                   12.77
      95% quantile:                   13.91
      Smallest interval(s) containing 68% and local modes:
       (5.5, 12.5) (local mode at 8.75 with rel. height 1; rel. area 0.7)

  (1) Parameter "p1":
      ...

      …

Results of the optimization 
===========================
 Optimization algorithm used: Minuit
 List of parameters and global mode:
   (0) Parameter "p0": 8.779 +- 3.165
   (1) Parameter "p1": 0.9847 +- 0.05493

Results of the model test
=========================
p-value at global mode: 0.6913

Status of the MCMC
==================
 Convergence reached:                    yes
 Number of iterations until convergence: 6001
 Number of chains:                       5
 Number of iterations per chain:         100000
 Average efficiencies:
    (0) Parameter "p0": 22.62%
    (1) Parameter "p1": 20.22%
                                                                                             
-----------------------------------------------------
Notation:
 Mean        : mean value of the marg. pdf
 Median      : maximum of the marg. pdf
 Marg. mode  : most probable value of the marg. pdf
 V           : Variance of the marg. pdf
 Quantiles   : most commonly used quantiles
-----------------------------------------------------
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Another GraphFitter example

● Fit data set using:

I. 2nd order polynomial
(no peak)

II. gaussian peak + constant

III. gaussian peak + straight line

IV. gaussian peak + 2nd order pol.

● Assume flat a priori probabilities
in certain ranges of parameters, 
i.e. 

● Search for peak in range from 2. to 18. with maximum sigma of 4.

● Data were generated as gaussian peak + 2nd order polynomial

p0 = const.
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Marginalized posterior pdf
2nd order polynomial

95% limit
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Marginalizad posterior pdf
peak + straight line

● Central interval not always optimal

● Multiple maxima in parameter space

● MCMC follows probability distributions with 
complicated shapes

● Optionally calculate smallest interval
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Fits + Uncertainty bands

● Uncertainty band calculated 
during Markov Chain run

– calculate f(x) at many different 
x using  sampled according 
to posterior

– fill 2D histogram in (x,y)

– after run look at distribution of 
y at given x and calculate 
central 68% interval

● Fit can lie outside of the central 
68% interval

● Again, for multimodal 
distributions central 68% not 
optimal
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Uncertainty multi-band

● Calculating f(x) at many x for every set of parameters sampled in the Markov chain ⇔ 
uncertainty propagation

● Can lead to multiple uncertainty bands

Probability density for true y at x=5.0

Data

Best fit

Smallest 68%

p(y) at x=5.0

Smallest 68%

f(x=5.0) for the best fit



21.5.2010 Daniel Kollár #25

HistogramFitter example

Simple ROOT macro:
● takes histogram as an input
● uses poissonian uncertainties

 TH1D * histo = ...;  define data histogram
 TF1 * f1 = ...;          define fit function and parameter ranges
                           
 BCHistogramFitter * hf =

new BCHistogramFitter(histo, f1);
 hf -> Fit();
 hf -> DrawFit("", true);
 ...

Use whenever you want to fit a histogram.



21.5.2010 Daniel Kollár #26

EffciencyFitter example

Simple ROOT macro:
● takes two histograms as an input:

– histogram with the whole set of events/entries
– histogram with subset of events/entries

● uses binomial uncertainties

 TH1D * hfull = ...;
 TH1D * hsub = ...;
 TF1 * f1 = ...;

 BCEfficiencyFitter * ef = new BCEfficiencyFitter(hfull, hsub, f1);
 ef -> Fit();
 ef -> DrawFit("", true);
 ...

Use whenever you want to fit an 
efficiency.

Typical example:

→ fitting the trigger efficiency
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A few points to fast ftters

● by default the priors for all parameters are fat !
– to set a different than flat prior one has to at the moment create a new class which 

inherits from a fast fitter class and overload the LogAPrioriProbability() method

– in the next release it will be possible to set a prior for individual parameter as a TF1 
object

● all fast fitters inherit from BCModel so they can use all it's functionality to also do a more 
sophisticated analysis

– normalize

– compare models

– use fancy plotting

– ...
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Example with explicit model defnition

● Data generated according to 2nd order 
polynomial

● Fit using straight line and 2nd order 
polynomial

● assuming 2 half gaussians for the 
description of the asymmetric errors

● JUST TO ILLUSTRATE THE MODEL 
DEFINITION!

y uncertainty at a given x
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USER MODEL EXAMPLE – 2nd order polynomial  (model class)

void ModelPol2::DefineParameters() {    // define parameters of the model
this -> AddParameter(“A”,  0.,   5.);  // index 0
this -> AddParameter(“B”,  0.,   1.2); // index 1
this -> AddParameter(“C”, -0.1., 0.1); // index 2

}                                           // fit function is  f(x) = A + Bx + Cx^2

double ModelPol2::LogLikelihood(vector <double> params) { // define likelihood
double lprob = 0.;
double A = params[0], B = params[1], C = params[2];
for(int i=0; i<this -> GetNDataPoints(); i++) {  // loop over all data points

BCDataPoint * data = this -> GetDataPoint(i);
double        x = data -> GetValue(0);
double        y = data -> GetValue(1);
double yerrdown = data -> GetValue(2);  // asymmetric errors on all points
double   yerrup = data -> GetValue(3);

double yexp     = A + x*B + x*x*C;  // calculate expectation value

double yerr     = (y>yexp) ? yerrdown : yerrup; // decide which uncertainty is applicable

lprob += BCMath::LogGaus(y, yexp, yerr, true);
}
return lprob;

}

double ModelPol2::LogAPrioriProbability(vector <double> params) { // define prior
return 0.;  // flat prior probability for all parameters in their range; !!! not normalized !!!

}

Source code: Model defnition
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USER MODEL EXAMPLE – 2nd order polynomial  (simple main program)

int main()
{

ModelPol2 * mymodel = new ModelPol2(“2Dpol”);  // create model object

DataSet * mydata = new DataSet(“measurement1”);  // create data object 
mydata->ReadDataFromFileTxT(“measurement1.dat”,4); // read in data, 4 columns: x,y,erup,erdn
mymodel->SetDataSet(mydata);  // assign data to model

// mymodel->Normalize();  // integrate to get the normalization

mymodel->MarginalizeAll();  // marginalization
mymodel->PrintAllMarginalized(“mymodel_all.ps”);

mymodel->FindModeMinuit( mymodel -> GetBestFitParameters() ); // Mode finding using Minuit

BCModelOutput * myout = new BCModelOutput(mymodel,”mymodel.root”);
myout->WriteMarginalizedDistributions();
myout->WriteErrorBand();
myout->Close();

mymodel->PrintResults();

// add more things to do

return 0;
}

Source code: Main program
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1D and 2D marginalized distributions
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Example with asymmetric errors
Fit + error band
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Interface to RooStats

● class BCRooInterface implemented by Gregory Schott from RooStats team

– no MCMC available in RooStats at that time

● allows to run complete BAT analysis starting from RooFit workspace

– contains definitions of parameters and their ranges, likelihood, prior, data

– full definition of a model in BAT

● work is ongoing on implementation of a complete interface to RooStats

– allowing to call BAT from within RooStats during run-time

– providing results in RooStats format

– more or less transparent for RooStats users
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Next BAT release

● current BAT version is 0.3.2
● next version 0.4 to show up within several weeks

– many updates planned

● easy setup of priors without need of overloading LogAPrioriProbability()
(especially useful for fast fitters)

● new fast fitter class – TemplateFitter
● new tool to provide better summary of results
● some performance improvements
● ...
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Template Fitter

● fit a set of templates to a histogram

– e.g. a signal peak on top of a multi-component background

– assuming that the shapes of all components are known

– estimate the size of all contributions
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SummaryTool

● tool providing summary plots for easy overview of results without having to go through all the 
plots of marginalized distributions
– particularly useful for models with large number of parameters

● easy to use: SummaryTool * summaryM1 = new SummaryTool();
summaryM1->SetModel(model1);
summaryM1->PrintParameterPlot(“par_M1.eps”);
summaryM1->PrintCorrelationPlot(“corr_M1.eps”);
...

● summary of single parameter
posterior PDFs

p(p1|data)
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SummaryTool – Correlation Matrix

● summarizes Npar*(Npar-1)/2 posterior distributions marginalized wrt. combination of any 
two parameters of the model (for Npar=50 it's ~ 1000 distributions) into a single plot

p(p1,p2|data)
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SummaryTool – Knowledge update

● comparison of prior and posterior for 1D and 2D distributions



21.5.2010 Daniel Kollár #39

Tutorials

● tutorials section was recently added to the BAT webpage
– can be found under:   Documentation         Tutorials

● several tutorials available
● show basic information on how to

– set up a model
– calculate limits
– define prior
– include systematic uncertainties
– etc.

● tutorials have form of exercises
with solutions

● more tutorials will come
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Future plans

● we're starting to be limited by the current structure of the code especially when trying to 
implement new algorithms
– we're preparing reworked BAT with new internal structure which should allow much 

easier extensibility

– slowed down by the required maintenance of the current BAT + user requests

– not too much manpower until now, but this will change soon

● many things to implement
– objective priors, reference priors

– different sampling algorithms

– extended proposal functions

● more predefined models for frequent problems for quick use
● feature requests are accepted

– you can also contribute yourself
– if you make an analysis using BAT and it's addressing a general problem, it might be 

worth to consider making it available as a predefined class for easy use for everyone

Visit http://www.mppmu.mpg.de/bat for more info, updates, documentation, examples, etc.

http://www.mppmu.mpg.de/bat
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