This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.9
Back to | overview for 0.9 | all versions |
Test "1d_binomial_6_9"
Results | |
---|---|
Status | good |
CPU time | 141 s |
Real time | 141.4 s |
Plots | 1d_binomial_6_9.ps |
Log | 1d_binomial_6_9.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 1000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Acceptable) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.07339 | 0.007283 | - | -10.08 | 0.3 | 0.5 | 0.7 |
chi2 | good | 93 | 133.8 | 13.64 | 43.92 | -2.995 | 40.91 | 68.19 | 95.47 |
KS | good | 1 | 0.9946 | 0.95 | -0.5415 | 0.0057 | 0.95 | 0.99 | 0.9999 |
mean | good | 0.6364 | 0.6364 | 4.385e-05 | -0.001135 | 0.1647 | 0.0001315 | 0.0002192 | 0.0003069 |
mode | good | 0.6667 | 0.675 | 0.03333 | 1.25 | -0.25 | 0.1 | 0.1667 | 0.2333 |
variance | good | 0.01928 | 0.01969 | 0.002528 | 2.102 | -0.1603 | 0.007584 | 0.01264 | 0.0177 |
quantile10 | good | 0.4482 | 0.4481 | 0.03333 | -0.02472 | 0.003324 | 0.1 | 0.1667 | 0.2333 |
quantile20 | good | 0.5163 | 0.5163 | 0.03333 | -0.001828 | 0.0002831 | 0.1 | 0.1667 | 0.2333 |
quantile30 | good | 0.5655 | 0.5655 | 0.03333 | -0.002898 | 0.0004916 | 0.1 | 0.1667 | 0.2333 |
quantile40 | good | 0.607 | 0.607 | 0.03333 | -0.003738 | 0.0006807 | 0.1 | 0.1667 | 0.2333 |
quantile50 | good | 0.6449 | 0.6449 | 0.03333 | 0.00664 | -0.001285 | 0.1 | 0.1667 | 0.2333 |
quantile60 | good | 0.6816 | 0.6816 | 0.03333 | -0.001593 | 0.0003258 | 0.1 | 0.1667 | 0.2333 |
quantile70 | good | 0.7192 | 0.7193 | 0.03333 | 0.00668 | -0.001441 | 0.1 | 0.1667 | 0.2333 |
quantile80 | good | 0.7606 | 0.7606 | 0.03333 | 0.00276 | -0.0006296 | 0.1 | 0.1667 | 0.2333 |
quantile90 | good | 0.8125 | 0.8125 | 0.03333 | 0.003771 | -0.0009192 | 0.1 | 0.1667 | 0.2333 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |