This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.9
Back to | overview for 0.9 | all versions |
Test "1d_binomial_6_7"
Results | |
---|---|
Status | good |
CPU time | 123.8 s |
Real time | 124.1 s |
Plots | 1d_binomial_6_7.ps |
Log | 1d_binomial_6_7.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 1000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Acceptable) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.1292 | 0.01284 | - | -10.07 | 0.3 | 0.5 | 0.7 |
chi2 | good | 89 | 112.7 | 13.34 | 26.66 | -1.779 | 40.02 | 66.71 | 93.39 |
KS | good | 1 | 0.736 | 0.95 | -26.4 | 0.2779 | 0.95 | 0.99 | 0.9999 |
mean | good | 0.7778 | 0.7778 | 4.13e-05 | -0.002113 | 0.398 | 0.0001239 | 0.0002065 | 0.0002891 |
mode | good | 0.8571 | 0.865 | 0.03333 | 0.9167 | -0.2357 | 0.1 | 0.1667 | 0.2333 |
variance | good | 0.01728 | 0.01766 | 0.002639 | 2.149 | -0.1407 | 0.007918 | 0.0132 | 0.01848 |
quantile10 | good | 0.5937 | 0.5935 | 0.03333 | -0.02378 | 0.004236 | 0.1 | 0.1667 | 0.2333 |
quantile20 | good | 0.6696 | 0.6696 | 0.03333 | -0.007313 | 0.001469 | 0.1 | 0.1667 | 0.2333 |
quantile30 | good | 0.7214 | 0.7214 | 0.03333 | -0.002408 | 0.0005211 | 0.1 | 0.1667 | 0.2333 |
quantile40 | good | 0.7628 | 0.7629 | 0.03333 | 0.009654 | -0.002209 | 0.1 | 0.1667 | 0.2333 |
quantile50 | good | 0.7989 | 0.799 | 0.03333 | 0.01243 | -0.00298 | 0.1 | 0.1667 | 0.2333 |
quantile60 | good | 0.8318 | 0.8318 | 0.03333 | 0.002186 | -0.0005456 | 0.1 | 0.1667 | 0.2333 |
quantile70 | good | 0.8635 | 0.8635 | 0.03333 | 0.0005361 | -0.0001389 | 0.1 | 0.1667 | 0.2333 |
quantile80 | good | 0.8957 | 0.8957 | 0.03333 | -0.0009951 | 0.0002674 | 0.1 | 0.1667 | 0.2333 |
quantile90 | good | 0.9314 | 0.9315 | 0.03333 | 0.004684 | -0.001309 | 0.1 | 0.1667 | 0.2333 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |