This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.9
Back to | overview for 0.9 | all versions |
Test "1d_binomial_3_8"
Results | |
---|---|
Status | good |
CPU time | 141.5 s |
Real time | 141.9 s |
Plots | 1d_binomial_3_8.ps |
Log | 1d_binomial_3_8.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 1000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Acceptable) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.06564 | 0.006487 | - | -10.12 | 0.3 | 0.5 | 0.7 |
chi2 | good | 95 | 101.8 | 13.78 | 7.205 | -0.4965 | 41.35 | 68.92 | 96.49 |
KS | good | 1 | 0.9143 | 0.95 | -8.575 | 0.09026 | 0.95 | 0.99 | 0.9999 |
mean | good | 0.4 | 0.3999 | 4.636e-05 | -0.01533 | 1.323 | 0.0001391 | 0.0002318 | 0.0003245 |
mode | good | 0.375 | 0.375 | 0.03333 | -4.811e-07 | 5.412e-08 | 0.1 | 0.1667 | 0.2333 |
variance | good | 0.02182 | 0.02225 | 0.002785 | 1.986 | -0.1556 | 0.008355 | 0.01392 | 0.01949 |
quantile10 | good | 0.2104 | 0.2103 | 0.03333 | -0.03521 | 0.002222 | 0.1 | 0.1667 | 0.2333 |
quantile20 | good | 0.2675 | 0.2675 | 0.03333 | -0.007732 | 0.0006205 | 0.1 | 0.1667 | 0.2333 |
quantile30 | good | 0.3127 | 0.3127 | 0.03333 | -0.003723 | 0.0003493 | 0.1 | 0.1667 | 0.2333 |
quantile40 | good | 0.3535 | 0.3535 | 0.03333 | -0.009483 | 0.001006 | 0.1 | 0.1667 | 0.2333 |
quantile50 | good | 0.3931 | 0.393 | 0.03333 | -0.01251 | 0.001475 | 0.1 | 0.1667 | 0.2333 |
quantile60 | good | 0.4336 | 0.4335 | 0.03333 | -0.02155 | 0.002804 | 0.1 | 0.1667 | 0.2333 |
quantile70 | good | 0.4776 | 0.4775 | 0.03333 | -0.0226 | 0.003238 | 0.1 | 0.1667 | 0.2333 |
quantile80 | good | 0.5292 | 0.529 | 0.03333 | -0.02078 | 0.003299 | 0.1 | 0.1667 | 0.2333 |
quantile90 | good | 0.5994 | 0.5994 | 0.03333 | -0.009537 | 0.001715 | 0.1 | 0.1667 | 0.2333 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |