This C++ version of BAT is still being maintained, but addition of new features is unlikely. Check out our new incarnation, BAT.jl, the Bayesian analysis toolkit in Julia. In addition to Metropolis-Hastings sampling, BAT.jl supports Hamiltonian Monte Carlo (HMC) with automatic differentiation, automatic prior-based parameter space transformations, and much more. See the BAT.jl documentation.
Results of performance testing for BAT version 0.9
Back to | overview for 0.9 | all versions |
Test "1d_binomial_3_6"
Results | |
---|---|
Status | good |
CPU time | 134.5 s |
Real time | 134.8 s |
Plots | 1d_binomial_3_6.ps |
Log | 1d_binomial_3_6.log |
Settings | |
---|---|
N chains | 10 |
N lag | 10 |
Convergence | true |
N iterations (pre-run) | 1000 |
N iterations (run) | 10000000 |
Subtest | Status | Target | Test | Uncertainty | Deviation [%] | Deviation [sigma] | Tol. (Good) | Tol. (Acceptable) | Tol. (Bad) |
---|---|---|---|---|---|---|---|---|---|
correlation par 0 | off | 0 | 0.05347 | 0.005314 | - | -10.06 | 0.3 | 0.5 | 0.7 |
chi2 | good | 98 | 104.5 | 14 | 6.68 | -0.4676 | 42 | 70 | 98 |
KS | good | 1 | 0.8417 | 0.95 | -15.83 | 0.1666 | 0.95 | 0.99 | 0.9999 |
mean | good | 0.5 | 0.5 | 5.296e-05 | -0.00668 | 0.6306 | 0.0001589 | 0.0002648 | 0.0003707 |
mode | good | 0.5 | 0.505 | 0.03333 | 1 | -0.15 | 0.1 | 0.1667 | 0.2333 |
variance | good | 0.02778 | 0.02836 | 0.003373 | 2.078 | -0.1711 | 0.01012 | 0.01687 | 0.02361 |
quantile10 | good | 0.2786 | 0.2783 | 0.03333 | -0.08364 | 0.00699 | 0.1 | 0.1667 | 0.2333 |
quantile20 | good | 0.3501 | 0.3501 | 0.03333 | -0.005578 | 0.0005858 | 0.1 | 0.1667 | 0.2333 |
quantile30 | good | 0.4052 | 0.4052 | 0.03333 | -0.006509 | 0.0007912 | 0.1 | 0.1667 | 0.2333 |
quantile40 | good | 0.4539 | 0.4539 | 0.03333 | 0.004912 | -0.0006689 | 0.1 | 0.1667 | 0.2333 |
quantile50 | good | 0.5 | 0.5001 | 0.03333 | 0.01502 | -0.002253 | 0.1 | 0.1667 | 0.2333 |
quantile60 | good | 0.5461 | 0.5462 | 0.03333 | 0.009064 | -0.001485 | 0.1 | 0.1667 | 0.2333 |
quantile70 | good | 0.5948 | 0.5948 | 0.03333 | -0.003415 | 0.0006093 | 0.1 | 0.1667 | 0.2333 |
quantile80 | good | 0.6499 | 0.6498 | 0.03333 | -0.01225 | 0.002388 | 0.1 | 0.1667 | 0.2333 |
quantile90 | good | 0.7214 | 0.7214 | 0.03333 | -0.004887 | 0.001058 | 0.1 | 0.1667 | 0.2333 |
Subtest | Description |
---|---|
correlation par 0 | Calculate the auto-correlation among the points. |
chi2 | Calculate χ2 and compare with prediction for dof=number of bins with an expectation >= 10. Tolerance good: |χ2-E[χ2]| < 3 · (2 dof)1/2, Tolerance acceptable: |χ2-E[χ2]| < 5 · (2 dof)1/2, Tolerance bad: |χ2-E[χ2]| < 7 · (2 dof)1/2. |
KS | Calculate the Kolmogorov-Smirnov probability based on the ROOT implemention. Tolerance good: KS prob > 0.05, Tolerance acceptable: KS prob > 0.01 Tolerance bad: KS prob > 0.0001. |
mean | Compare sample mean, <x>, with expectation value of function, E[x]. Tolerance good: |<x> -E[x]| < 3 · (V[x]/n)1/2,Tolerance acceptable: |<x> -E[x]| < 5 · (V[x]/n)1/2,Tolerance bad: |<x> -E[x]| < 7 · (V[x]/n)1/2. |
mode | Compare mode of distribution with mode of the analytic function. Tolerance good: |x*-mode| < 3 · V[mode]1/2, Tolerance acceptable: |x*-mode| < 5 · V[mode]1/2 bin widths, Tolerance bad: |x*-mode| < 7 · V[mode]1/2. |
variance | Compare sample variance s2 of distribution with variance of function. Tolerance good: 3 · V[s2]1/2, Tolerance acceptable: 5 · V[s2]1/2, Tolerance bad: 7 · V[s2]1/2. |
quantile10 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile20 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile30 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile40 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile50 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile60 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile70 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile80 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |
quantile90 | Compare quantile of distribution from MCMC with the quantile of analytic function. Tolerance good: |q_{X}-E[q_{X}]|<3·V[q]1/2, Tolerance acceptable: |q_{X}-E[q_{X}]|<5·V[q]1/2, Tolerance bad: |q_{X}-E[q_{X}]|<7·V[q]1/2. |